Những câu hỏi liên quan
H24
Xem chi tiết
NL
22 tháng 2 2021 lúc 0:57

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\) (1)

Tương tự: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\) (2)

Cộng vế với vế và rút gọn:

\(x+y=-x-y\Leftrightarrow x+y=0\)

Bình luận (0)
KT
Xem chi tiết
CN
Xem chi tiết
DL
24 tháng 8 2019 lúc 20:08

Có xy + yz + zx = 1

=> 1 + x2 = x2 + xy + yz + zx

     1 + x2 = (x + y)(y + z)

Tương tự ta có: 

     1 + y2 = (y + x)(y + z)

     1 + z2 = (z + x)(z + y)

Thay vào P, ta được:

\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(P=xy+yz+zx+xy+yz+zx\)

\(P=2\left(xy+yz+zx\right)=2\)

Vậy P = 2

Bình luận (0)
HT
Xem chi tiết
PC
14 tháng 9 2018 lúc 22:01

Bài này hình như x,y,z>0

Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)

Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\) 

                \(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)

Cộng từng vế, ta có: 

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\) 

\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)

Bình luận (0)
NP
14 tháng 9 2018 lúc 22:08

\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)

Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)

Nếu x,y,z\(\ge0\Rightarrow A=2\)

Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)

Bình luận (0)
KG
Xem chi tiết
MH
22 tháng 11 2023 lúc 21:23

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

Bình luận (0)
LP
22 tháng 11 2023 lúc 21:35

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

Bình luận (0)
SY
Xem chi tiết
BB
Xem chi tiết
DL
29 tháng 1 2022 lúc 22:16

ms lm xong luon này

undefined

Bình luận (2)
BB
Xem chi tiết
NL
30 tháng 1 2022 lúc 10:22

\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)

\(\Rightarrow x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)=a^2\)

\(\Rightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2.x\sqrt{1+y^2}.y\sqrt{1+x^2}+1=a^2\)

\(\Rightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2+1=a^2\)

\(\Rightarrow E^2+1=a^2\)

\(\Rightarrow E=\pm\sqrt{a^2-1}\)

Bình luận (0)
RH
30 tháng 1 2022 lúc 10:33

\(a^2=x^2y^2+(1+x^2)(1+y^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\->2xy\sqrt{(1+x^2)(1+y^2)}=a^2-2x^2y^2-1-x^2-y^2 \\E^2=x^2(1+y^2)+y^2(1+x^2)+2xy\sqrt{(1+x^2)(1+y^2)} \\=x^2+y^2+2x^2y^2+a^2-2x^2y^2-1-x^2-y^2 \\=a^2-1\)

Bình luận (0)
BB
Xem chi tiết
MY
5 tháng 2 2022 lúc 10:46

\(E^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(y^2+1\right)\left(x^2+1\right)}\)

\(=2\left(xy\right)^2+x^2+y^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\)

\(a^2=\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+\left(x^2+1\right)\left(y^2+1\right)\)

\(=2\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+x^2+y^2+1\)

\(\Rightarrow E^2=a^2-1\Rightarrow E=\sqrt{a^2-1}\)

Bình luận (0)
DD
5 tháng 2 2022 lúc 10:48

\(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)

\(\Leftrightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

\(=2x^2y^2+x^2+y^2+2xy\left(a-xy\right)\)

\(=2x^2y^2+x^2+y^2+2xya-2x^2y^2\)

\(=x^2+y^2+2xya\)

\(=\left(2xy\right)2+a=a^2+a=E^2\)

\(E=\sqrt{a^2+a}\)

Bình luận (0)
H24
5 tháng 2 2022 lúc 10:48

\(\rightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+\\ 2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\\ =2xy^2+x^2+y^2+2xy\left(a-xy\right)\\ =2x^2y^2+x^2+y^2+2xya-2x^2y^2\\ =x^2+y^2+2xya\\ =\left(x+y\right)^2+a=a^2+a\\ =E^2\\ Vậy.E=\sqrt{a^2+a}\)

Bình luận (1)
LC
Xem chi tiết
NT
6 tháng 8 2016 lúc 19:32

đề sai

Bình luận (0)