Chương I - Căn bậc hai. Căn bậc ba

H24

Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\). Tính giá trị của \(\left(x+y\right)\)

NL
22 tháng 2 2021 lúc 0:57

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\) (1)

Tương tự: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\) (2)

Cộng vế với vế và rút gọn:

\(x+y=-x-y\Leftrightarrow x+y=0\)

Bình luận (0)