Những câu hỏi liên quan
DM
Xem chi tiết
NT
11 tháng 5 2022 lúc 19:17

S={x|x>3}

Bình luận (1)
AI
11 tháng 5 2022 lúc 19:23

undefined

Bình luận (0)
TN
Xem chi tiết
ND
8 tháng 5 2018 lúc 17:29

\(\dfrac{x+1}{60}+\dfrac{x+2}{59}=\dfrac{x+3}{58}+\dfrac{x+4}{57}\)

\(\Leftrightarrow\dfrac{x+1}{60}+1+\dfrac{x+2}{59}+1=\dfrac{x+3}{58}+1+\dfrac{x+4}{57}+1\)

\(\Leftrightarrow\dfrac{x+1+60}{60}+\dfrac{x+2+59}{59}=\dfrac{x+3+58}{58}+\dfrac{x+4+57}{57}\)

\(\Leftrightarrow\dfrac{x+61}{60}+\dfrac{x+61}{59}-\dfrac{x+61}{58}-\dfrac{x+61}{57}=0\)

\(\Leftrightarrow\left(x+61\right)\left(\dfrac{1}{60}+\dfrac{1}{59}-\dfrac{1}{58}-\dfrac{1}{57}\right)=0\)

\(\Leftrightarrow x+61=0\)

\(\Leftrightarrow x=-61\)

Bình luận (0)
YM
Xem chi tiết
DP
Xem chi tiết
NT
23 tháng 12 2021 lúc 14:39

b: \(=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)

Bình luận (0)
NM
23 tháng 12 2021 lúc 14:39

\(a,=-3x^3+x^2+9x^2-3x-12x+4=-3x^3+10x^2-15x+4\\ b,=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3x}{x\left(x+5\right)}=\dfrac{3}{x+5}\)

Bình luận (1)
YM
Xem chi tiết
NT
25 tháng 6 2023 lúc 22:13

y'=1/3*3x^2+1/2*2x(m-1)+(2m-1)

=x^2+x(m-1)+2m-1

a: y đồng biến trên R thì y'>0 với mọi x thuộc R

Δ=(m-1)^2-4(2m-1)

=m^2-2m+1-8m+4=m^2-10m+5

Để y'>0 với mọi x thuộc R thì m^2-10m+5<0

=>5-2*căn 5<m<5+2căn 5

b: y đồng biến trên (-vô cực;-2) và (0;1) khi y'>0 với mọi x thuộc (-vô cực;-2) và (0;1)

y'=x^2+x(m-1)+2m-1

=x^2+xm-x+2m-1

=m(x+2)+x^2-x-1

y'>0 với x thuộc (-vô cực;-2)

=>m>-x^2+x+1/(x+2) với x thuộc (vô cực;-2)

g(x)=-x^2+x+1/(x+2)

g'=(-x^2+x+1)'(x+2)-(-x^2+x+1)(x+2)'/(x+2)^2

=(x+2+x^2-x-1)/(x+2)^2=(x^2+1)/(x+2)^2>0 với mọi x

=>m thuộc (-vô cực;-2)

Tương tự, ta cũng được: m thuộc (0;1)

Bình luận (0)
H24
Xem chi tiết
KN
15 tháng 1 2018 lúc 20:33

Hỏi đáp ToánHỏi đáp Toán

Bình luận (0)
PL
Xem chi tiết
KB
6 tháng 2 2019 lúc 15:53

undefinedundefined

Bình luận (3)
PL
Xem chi tiết
TL
27 tháng 7 2017 lúc 15:12

\(\text{a) }\left(x-1\right)\left(x-5\right)>0\\ \text{ Để }\left(x-1\right)\left(x-5\right)>0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ cùng dấu }\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên dương }\Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5>0\Rightarrow x>5\end{matrix}\right.\Rightarrow x>5\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên âm }\Rightarrow\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow x< 1\\ \text{Vậy }\left(x-1\right)\left(x-5\right)>0\text{ khi }x< 1\text{ hoặc }x>5\)

\(\text{b) }\left(x-1\right)\left(x-5\right)< 0\\ \text{ Để }\left(x-1\right)\left(x-5\right)< 0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ trái dấu }\\ \text{ Mà }x-1>x-5\\ \Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow1< x< 5\\ \text{ Vậy }\left(x-1\right)\left(x-5\right)< 0\text{ khi }1< x< 5\)

Bình luận (0)
TL
27 tháng 7 2017 lúc 15:33

\(\text{c) }\dfrac{3}{4}-\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{2}\\ \Leftrightarrow\left|x-\dfrac{1}{7}\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{7}=-2\\x-\dfrac{1}{7}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{7}\\x=\dfrac{15}{7}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{13}{7}\text{ hoặc }x=\dfrac{15}{7}\)

\(\text{d) }\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=-\dfrac{1}{4}\\x-\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{1}{4}\text{ hoặc }x=\dfrac{3}{4}\)

\(\text{e) }8\left(x+1\right)-2\left(2x+5\right)=0\\ \Leftrightarrow8x+8-4x+10=0\\ \Leftrightarrow\left(8x-4x\right)+\left(8+10\right)=0\\ \Leftrightarrow4x+18=0\\ \Leftrightarrow4x=-18\\ \Leftrightarrow x=-\dfrac{9}{2}\\ \text{Vậy }x=-\dfrac{9}{2}\)

\(\text{g) }\left(6x-1\right)-\left(x+8\right)=0\\ \Leftrightarrow6x-1-x-8=0\\ \Leftrightarrow\left(6x-x\right)-\left(1+8\right)=0\\ \Leftrightarrow5x-9=0\\ \Leftrightarrow5x=9\\ \Leftrightarrow x=\dfrac{9}{5}\\ \text{Vậy }x=\dfrac{9}{5}\)

\(\text{h) }\left|7x-\dfrac{1}{4}\right|=1\\ \Leftrightarrow\left[{}\begin{matrix}7x-\dfrac{1}{4}=-1\\7x-\dfrac{1}{4}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-\dfrac{3}{4}\\7x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{28}\\x=\dfrac{5}{28}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{3}{28}\text{ hoặc }x=\dfrac{5}{28}\)

\(\text{q) }-2x-3=-x+7\\ \Leftrightarrow-2x-3-\left(-x+7\right)=0\\ \Leftrightarrow-2x-3+x-7=0\\ \Leftrightarrow\left(-2x+x\right)-\left(3+7\right)=0\\ \Leftrightarrow-x-10=0\\ \Leftrightarrow-x=10\\ \Leftrightarrow x=-10\\ \text{ Vậy }x=-10\)

Bình luận (0)
TD
Xem chi tiết
NL
26 tháng 11 2018 lúc 22:19

Đặt \(\sqrt{x}=t\ge0\)

\(P=\dfrac{4t}{3t^2-3t+3}\Rightarrow3Pt^2-\left(3P+4\right)t+3P=0\left(1\right)\)

Ta cần tìm P để (1) có ít nhất một nghiệm không âm

\(\Delta=\left(3P+4\right)^2-36P^2=\left(4-3P\right)\left(4+9P\right)\ge0\)

\(\Rightarrow\dfrac{-4}{9}\le P\le\dfrac{4}{3}\) (2)

Để (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}\dfrac{3P+4}{3P}< 0\\\dfrac{3P}{3P}>0\end{matrix}\right.\) \(\Rightarrow\dfrac{-4}{3}< P< 0\)

\(\Rightarrow\) để (1) có ít nhất 1 nghiệm không âm thì \(P\ge0\) hoặc \(P\le\dfrac{-4}{3}\) (3)

Kết hợp (2) với (3) ta được: \(0\le P\le\dfrac{4}{3}\)

Vậy \(P_{min}=0\)\(P_{max}=\dfrac{4}{3}\)

Bình luận (2)