Cho △ABC ⊥ tại A có AB=3cm; AC=4cm. M là trung điểm của BC. Từ BC kẻ các đường vuông góc với đường thẳng AM, chúng cắt AM lần lượt tại H và K.
a. Tính BC
b. Cm: △BHM=△CKM
c. CM: 2(AH+MK)=BC
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A , có AB = √3cm , BC = 2√3cm , tính tỉ số lượng giác của góc B
\(\sin\widehat{B}=\sin60^0=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{B}=\dfrac{1}{2}\)
\(\tan\widehat{B}=\sqrt{3}\)
\(\cot\widehat{B}=\dfrac{\sqrt{3}}{3}\)
Cho tam giác ABC vuông tại A có AB = 4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D Cho tam giác ABC vuông tại A có AB=4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D. a) Tính độ dài đoạn thẳng AH b) Chứng minh BD là tiếp tuyến của đường tròn (C) c) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt tại P,Q. Chứng minh EF bình phương =4PE.QF
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
Câu 2 a. Cho tam giác ABC cân tại A có AB = 3cm. Tính độ dài cạnh AC ?
b) Cho tam giác ABC cân tại A có . Tính số đo góc C ?
Cho tam giác ABC vuông tại A có AB\(=\) 3cm, BC \(=5cm.\)
Tính diện tích tam giác ABC
Áp dụng định lí Pytago có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
Diện tích tam giác ABC là:
( 3. 5 ): 2 = 7.5 ( cm2)
Đ/s:...
Cho tam giác ABC vuông tại A, có góc ABC=60 độ, AB= 3cm. Tính độ dài phân giác BD.
Cho tam giác ABC vuông tại A có AB=4cm, AC =3cm. Giải tam giác vuông
Áp dụng PTG:
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
1,a,
ta có bc^2=ab^2+ac^2=4^2+3^2=25=>bc=5 cm
b,
xét tam giác abc và tam giác adc có:
ac:cạnh chung
^b=^d
ab=ad
=>tam giác abc=tam giác adc(cgc)
=>cd=cb
xét tam giác bae và tam giác dae có:
ae:cạnh chung
^bae=^dae
da=db
=>tam giác bae=tam giác dae(cgc)
=>be=de
xét tam giác bec và tam gíac dec có
be=de(cmt)
cd=cb(cmt)
ce chung
=>tam giác bec=tam giác dec(ccc)
Cho tam giác ABC vuông tại A;có AB=3cm;=60 độ.Tính tia phân giác BD
Vì BD là phân giác góc B => góc ABD=1/2 góc B = 30 độ
góc A=90 độ
=> Tam giác ABD là nửa tam giác đều cạnh BD
=> AB=\(\dfrac{BD\sqrt{3}}{2}\)
=> \(BD=\dfrac{2AB}{\sqrt{3}}=2\sqrt{3}\)
a/ Cho tam giác ABC vuông tại B có AB=12cm,BC=16cm.Tính AC
b/ Cho tam giác DBC vuông tại C có CB=3cm,BD=5cm.Tính CD
Áp dụng định lí Pytago ta có
\(a,BC^2=AB^2+BC^2=12^2+16^2\\ =\sqrt{400}=20\\ b,BD^2=BC^2+CD^2\\ 5^2=3^2+CD^2\\ CD^2=5^2-3^2=\sqrt{16}=4\)
cho tam giac abc vuông tại a, AB 3cm bc 5 cm so sánh góc b và c
Cho tam giác ABC có AB=6cm, AC=8cm, tia phân giác góc A cắt BC tại D. CMR: góc ADB<góc ADC.
Cho tam giác ABC cân tại A có chu vi = 20cm.Cạnh y của BC=6cm. So sánh các góc của ABC?
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)