x^2-4xy+4y^2
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)
Thu gọn đa thức :
a) x^2 + 4y^2 + 4xy
b) 1 - 10x + 25x^2
c) x^2 + 4y^4 - 4xy^2
a) \(x^2+4y^2+4xy\)
\(=x^2+4xy+\left(2y\right)^2\)
\(=\left(x+2y\right)^2\)
b) \(1-10x+25x^2\)
\(=\left(5x\right)^2-10x+1\)
\(=\left(5x-1\right)^2\)
c) \(x^2+4x^4-4xy^2\)
\(=\left(2x^2\right)^2-4xy^2+x^2\)
\(=\left(2x^2-x\right)^2\)
Rút gọn:
\(\frac{2x^2-4xy}{x^2+4xy+4y^2}\): \(\frac{4y^2-x^2}{x^2-4xy+4y^2}\): \(\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^2}\)
Phân tích thành nhân tử
\(1-8x+16x^2 -y^2\)
\(x^2 -2xy+y^2 -z^2\)
\(x^2 +4xy-16+4y^2\)
\(x^2 -16-4xy+4y^2\)
1: =(16x^2-8x+1)-y^2
=(4x-1)^2-y^2
=(4x-1-y)(4x-1+y)
2: =(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
3: =(x^2+4xy+4y^2)-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
4: =(x^2-4xy+4y^2)-16
=(x-2y)^2-4^2
=(x-2y-4)(x-2y+4)
min x^2 + 4y^2 - 4xy + 2x - 4y + 9
Đặt \(P=x^2+4y^2-4xy+2x-4y+9\)
\(P=\left(x-2y\right)^2+2\left(x-2y\right)+1+8\)
\(P=\left(x-2y+1\right)^2+8\ge8\)
\(P_{min}=8\) khi \(x-2y+1=0\)
Ai giải hộ 4xy+x^2-xz+4y^2-2yz
4xy+x^2-xz+4y^2-2yz
4x^2-[5x-4]^2=0
x^3-6x^2+9x-4=0
D=x^2+4y^2-2x+10+4xy-4y tại x+2y=5
\(D=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4y^2+4xy\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay \(x+2y=5;\)có :
\(D=5^2-2.5+10\)
\(=25-10+10\)
\(=25\)
Vậy...
y^2-9-x^2+6x
25-4x^2-4xy-y^2
x^2-xz+4y^2-2yz+4xy
3x^2+6xy-48z^2+3y^2
x^2-z^2+4y^2-4t^2-4xy+4zt
x^3+2x^2y+xy^2-16x