Những câu hỏi liên quan
BT
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 1 2018 lúc 13:11

Chọn đáp án A

x 2  + 2x - 5 = 0 phương trình có ac < 0 ⇒ phương trình có 2 nghiệm phân biệt

Theo định lí Vi-et ta có:

Bình luận (0)
H24
Xem chi tiết
HP
5 tháng 2 2022 lúc 9:06

\(\left|4-3x\right|\le8\)

\(\Leftrightarrow-8\le4-3x\le8\)

\(\Leftrightarrow-\dfrac{4}{3}\le x\le4\)

Bình luận (0)
NN
Xem chi tiết
TT
Xem chi tiết
H24
2 tháng 2 2021 lúc 22:06

Điều kiện: \(x\ge-1\)

PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)

+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

 \(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)

Bình luận (0)
DT
Xem chi tiết
LH
29 tháng 5 2021 lúc 9:27

\(x^2-2\left(m-1\right)x+m-5=0\)

Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

Đặt \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)

\(=\left(2m-3\right)^2+15\ge15\)

\(\Rightarrow A\ge\sqrt{15}\)

\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)

Bình luận (1)
LT
Xem chi tiết
DG
19 tháng 7 2016 lúc 18:17

=3x=2x+20

x= -4

Bình luận (0)
M2
Xem chi tiết
H24
13 tháng 4 2021 lúc 21:02

Xét phương trình có dạng $ax^2+bx+c=0$ có: \(\left\{{}\begin{matrix}a=1\ne0\\b=-\left(m+1\right)\\c=m\end{matrix}\right.\)

suy ra phương trình là phương trình bậc 2 một ẩn x
Có \(\Delta=b^2-4ac=m^2+2m+1-4.1.m=m^2-2m+1=\left(m-1\right)^2\ge0\)

nên phương trình luôn có 2 nghiệm 
Theo hệ thức Vi-et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m+1\right)\right]}{1}=m+1\\x_1.x_2=\dfrac{c}{a}=\dfrac{m}{1}=m\end{matrix}\right.\)

Phương trình có 2 nghiệm trái dấu và nghiệm dương > trị tuyệt đối nghiệm âm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\ac< 0\\x_1+x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m+1>0\end{matrix}\right.\Leftrightarrow0>m>-1\)

Bình luận (0)
QP
Xem chi tiết