Bài 6: Hệ thức Vi-et và ứng dụng

DT

cho phương trình x2 - 2<m-1>x +m-5 bằng 0 

 tìm m để x1 x2 là 2 nghiệm của phương trình . Tìm m để thỏa mãn biểu thức p bằngtrị tuyệt đối của x1-x2 đạt giá trị nhỏ nhất 

 

LH
29 tháng 5 2021 lúc 9:27

\(x^2-2\left(m-1\right)x+m-5=0\)

Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

Đặt \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)

\(=\left(2m-3\right)^2+15\ge15\)

\(\Rightarrow A\ge\sqrt{15}\)

\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)

Bình luận (1)

Các câu hỏi tương tự
HG
Xem chi tiết
H24
Xem chi tiết
LE
Xem chi tiết
TL
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
NV
Xem chi tiết
HD
Xem chi tiết
TT
Xem chi tiết