Những câu hỏi liên quan
TC
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Bình luận (0)
 Khách vãng lai đã xóa
LT
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Bình luận (0)
 Khách vãng lai đã xóa
HJ
Xem chi tiết
LM
Xem chi tiết
YL
21 tháng 1 2021 lúc 19:44

undefined

Bình luận (0)
TH
21 tháng 1 2021 lúc 22:30

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

Bình luận (0)
SP
Xem chi tiết
HH
30 tháng 7 2018 lúc 22:02

a/ \(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(A=x^3+8-\left[x^3+1+3x\left(x+1\right)\right]+3\left(x^2-1\right)\)

\(A=x^3+8-x^3-1-3x\left(x+1\right)+3x^2-3\)

\(A=-3x^2-3x+3x^2+4\)

\(A=4-3x\)

b/ Để \(\left|A\right|=A\)

=> \(A\ge0\)

<=> \(4-3x\ge0\)

<=> \(4\ge3x\)

<=> \(x\ge\frac{3}{4}\)

Vậy khi \(x\ge\frac{3}{4}\)thì \(\left|A\right|=A\).

Bình luận (0)
PA
Xem chi tiết
HC
Xem chi tiết
HN
21 tháng 6 2021 lúc 16:27

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

Bình luận (0)
TL
Xem chi tiết
NT
27 tháng 8 2021 lúc 14:51

a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x}{x-3}\)

b: Ta có P=AB

nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì 9x+9=6x

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Bình luận (0)
H24
27 tháng 8 2021 lúc 14:54

a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x}{x-3}\)

Bình luận (0)
NT
27 tháng 8 2021 lúc 15:02

a. ĐKXĐ: \(x\ne\pm3\)

\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{x^2-9}\)

\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-\left(3-11x\right)}{x^2-9}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{x^2-9}\)

\(=\dfrac{3x^2+9x}{x^2-9}=\dfrac{3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)

b. \(P=A.B\)

\(\Rightarrow P=\dfrac{3x}{x-3}.\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\) 

Ta có \(P=\dfrac{9}{2}\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{3x}{x+1}=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6x=9x+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\-3x=9\end{matrix}\right.\) \(\Leftrightarrow x=-3\)

c. \(B< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}-1< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{2}{1-x}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\1-x< 0\end{matrix}\right.\) \(\Leftrightarrow x>1\)

Bình luận (0)
HN
Xem chi tiết
TA
Xem chi tiết
NT
20 tháng 12 2022 lúc 13:31

a: ĐKXĐ: x<>2; x<>3

\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)

b: Để P<1 thì P-1<0

=>\(\dfrac{x+1-x+3}{x-3}< 0\)

=>x-3<0

=>x<3

Bình luận (0)
H24
Xem chi tiết