Cho C=( 2x^2+1/x^3-1 - 1/x-1) : (1 - x^2+3/ x^2+x+1)
a)Rút gọn C
b)Tìm x để C=3
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
1. Cho B=(2+x/2-x -2-x/2+x +4x/4-x^2) : x-3/2x-x^2
a) Rút gọn B
b) Tìm gtri của B khi x=1/2 ; x=2
c) Tìm x để A>0 ; A≤0
d)TÌm x để A<1
2. CHo C= 1/x+1 - ( x^3-x/x^2+1)[ 1 / (x+1)^2 - 1 / x^2-1 ]
a)Rút gọn C
b)Tìm x khi C=1
c)Tìm gtri của C khi x=2
d)Tìm x để C>0; C<0
Cần trước sáng ,mai
Cho C =\(\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1}\right):\left(\dfrac{x^2+2}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right)\)
a) Tìm đkxđ của C
b) Rút gọn C
c) Tìm x để C =\(\dfrac{2}{5}\)
d) Tìm x ϵ Z để giá trị C là số nguyên
Bổ sung phần c và d luôn:
c, C = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)
\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6
\(\Leftrightarrow\) x2 = 11
\(\Leftrightarrow\) x2 - 11 = 0
\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)
d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)
C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))
\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)) \(\in\) Ư(5)
Xét các TH:
4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)
Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z
Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)
cho A =(x-2)(x^2+2x+4)-(x+1)^3+3(x-1)(x+1)
a/rút gọn A
b/tìm x để |A|=A
c/tìm x để x.A=-3x^2+2
a/ \(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(A=x^3+8-\left[x^3+1+3x\left(x+1\right)\right]+3\left(x^2-1\right)\)
\(A=x^3+8-x^3-1-3x\left(x+1\right)+3x^2-3\)
\(A=-3x^2-3x+3x^2+4\)
\(A=4-3x\)
b/ Để \(\left|A\right|=A\)
=> \(A\ge0\)
<=> \(4-3x\ge0\)
<=> \(4\ge3x\)
<=> \(x\ge\frac{3}{4}\)
Vậy khi \(x\ge\frac{3}{4}\)thì \(\left|A\right|=A\).
cho A=1+((2x^2+x-1/1-x)-(2x^3-x+x^2/1-x^3):2x-1/x^2-x) a)Hãy rút gọn A b)tính x để A=5 c)cmr:A>2/3
Cho biểu thức C =( \(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)):(1-\(\dfrac{x^2-2}{x^2+x+1}\))
a) Rút gọn C
b) Tính giá trị của C biết |1-x| +2 =3(x+1)
c) Tìm x nguyên để C nguyên
d) Tìm x biết |C| > C
e) Tìm x để C2-C + 1 đạt giá trị nhỏ nhất
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
\(\)A=\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)với B=\(\dfrac{x-3}{x+1}\)
a) rút gọn A
b) P=A.B,tìm x để P=\(\dfrac{9}{2}\)
c) tìm x để B<1
a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{3x}{x-3}\)
b: Ta có P=AB
nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì 9x+9=6x
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow A=\dfrac{3x}{x-3}\)
a. ĐKXĐ: \(x\ne\pm3\)
\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{x^2-9}\)
\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-\left(3-11x\right)}{x^2-9}\)
\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{x^2-9}\)
\(=\dfrac{3x^2+9x}{x^2-9}=\dfrac{3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)
b. \(P=A.B\)
\(\Rightarrow P=\dfrac{3x}{x-3}.\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)
Ta có \(P=\dfrac{9}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{3x}{x+1}=\dfrac{9}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\6x=9x+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\-3x=9\end{matrix}\right.\) \(\Leftrightarrow x=-3\)
c. \(B< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{x-3}{x-1}-1< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\\dfrac{2}{1-x}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\1-x< 0\end{matrix}\right.\) \(\Leftrightarrow x>1\)
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
Cho Q= 2x-9 / x^2-5x+6 - x+3/ x-2 - 2x+1 /3-x a) TÌm ĐKXĐ và rút gọn Q b) TÌm x để P < 1 c) Tìm x thuộc Z để P đạt giá trị nguyên dương nhỏ nhất
a: ĐKXĐ: x<>2; x<>3
\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: Để P<1 thì P-1<0
=>\(\dfrac{x+1-x+3}{x-3}< 0\)
=>x-3<0
=>x<3
Bài 1: Rút gọn biểu thức sau:
A=(2x/1-3y+2x/1+3y):4x^2+14x/9y^2-6y+1
Bài 2: Cho biểu thức sau:
B=x^3+x^2-4x-4/3x^3-12x
a, Tìm điều kiện xác định
b, Rút gọn
c, Tìm x để biểu thức B nhận giá trị 0
Bài 3: Cho biểu thức:
C=(x+2/x^2-5x+x-2/x^2+5x):x^2+10/x^2-25
a, Rút gọn
b, Tìm x để C=2
Mọi người giúp em với ạ, em cảm ơn