Những câu hỏi liên quan
NS
Xem chi tiết
HS
10 tháng 9 2021 lúc 10:24

Xét tam giác ABC vuông tại A 

ta có \(S_{\Delta ABC}=\dfrac{1}{2}AB.AC\) hoặc \(S_{\Delta ABC}=\dfrac{1}{2}AH.BC\)

suy ra \(\dfrac{1}{2}AB.AC=\dfrac{1}{2}AH.BC\left(=S_{\Delta ABC}\right)\)

    <=> AB.AC=AH.BC

Bình luận (0)
NT
10 tháng 9 2021 lúc 12:46

\(S_{ABC}=\dfrac{AB\cdot AC}{2}\)

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)

Do đó: \(AB\cdot AC=AH\cdot BC\)

Bình luận (0)
MT
Xem chi tiết
AT
2 tháng 7 2021 lúc 16:10

a) \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.6.10=30\left(cm^2\right)\)

b) Xét \(\Delta ABH\) và \(\Delta CBA:\) Ta có: \(\left\{{}\begin{matrix}\angle ABCchung\\\angle AHB=\angle CAB=90\end{matrix}\right.\)

\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g-g\right)\)

c) \(\Delta ABH\sim\Delta CBA\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\Rightarrow AH.BC=AB.AC\)

Bình luận (0)
HN
Xem chi tiết
BT
26 tháng 3 2023 lúc 21:04

a)

Xét ΔHBA vàΔABC,có:

∠AHB=∠CAB(=90)

∠ABC:chung

⇒ΔHBA ~ΔABC(g-g)

✳Xét ΔHAC vàΔABC,có:

∠CHA=∠CAB(=90)

∠ACB:chung

⇒ΔHAC ~ΔABC(g-g)

Bình luận (0)
NT
27 tháng 3 2023 lúc 1:04

a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

Xét ΔHAC vuôngtại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC=HA/AC

=>BA^2=BH*BC và BA*AC=AH*CB

Xet ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

HB=3^2/5=1,8cm

Bình luận (0)
NT
Xem chi tiết
NL
Xem chi tiết
GH
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

Bình luận (0)
VZ
Xem chi tiết
DH
Xem chi tiết
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
RH
Xem chi tiết
NT
12 tháng 7 2023 lúc 19:47

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

Bình luận (0)