Những câu hỏi liên quan
H24
Xem chi tiết
NL
25 tháng 3 2021 lúc 14:41

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

Bình luận (0)
NN
Xem chi tiết
XO
25 tháng 7 2023 lúc 0:11

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

Bình luận (0)
NT
24 tháng 7 2023 lúc 23:19

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

Bình luận (0)
NT
24 tháng 7 2023 lúc 23:32

Tiếp tục phần tiếp theo

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)

⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài

Bình luận (0)
PH
Xem chi tiết
TT
Xem chi tiết
NQ
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

Bình luận (0)
QP
Xem chi tiết
H24
27 tháng 2 2019 lúc 19:34

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

Bình luận (0)
MD
Xem chi tiết
DK
Xem chi tiết
AH
28 tháng 10 2023 lúc 16:40

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

Bình luận (2)
NH
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 5 2017 lúc 3:10

a)  x 3 = 2 y ⇒ x y = 6 ⇒ x , y ∈ Ư ( 6 )   ⇒ ( x ; y ) = ( 1 ; 6 ) ; ( 6 ; 1 ) ; ( 2 ; 3 ) ; ( 3 ; 2 )

b)  − 3 x = y 2 ⇒ − x y = 6 ⇒ − x , y ∈ Ư ( 6 )  

⇒ ( x ; y ) = ( − 1 ; 6 ) ; ( − 6 ; 1 ) ; ( − 2 ; 3 ) ; ( − 3 ; 2 ) ; ( 1 ; − 6 ) ; ( 6 ; − 1 ) ( 2 ; − 3 ) ; ( 3 ; − 2 )

Bình luận (0)
H24
Xem chi tiết