Những câu hỏi liên quan
KT
Xem chi tiết
NL
Xem chi tiết
H24
17 tháng 5 2021 lúc 17:07

1)Từ đề bài:

`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`

`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`

`<=>a=b=c-2`

Bình luận (1)
H24
17 tháng 5 2021 lúc 17:08

`ab+bc+ca=abc`

`<=>1/a+1/b+1/c=1`

`<=>(1/a+1/b+1/c)^2=1`

`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`

`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`

`a+b+c=0`

Chia 2 vế cho `abc`

`=>1/(ab)+1/(bc)+1/(ca)=0`

`=>2/(ab)+2/(bc)+2/(ca)=0`

`=>1/a^2+1/b^2+1/c^2=1-0=1`

Bình luận (1)
BA
Xem chi tiết
NL
11 tháng 6 2021 lúc 23:57

Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)

Bình luận (0)
VN
Xem chi tiết
NL
9 tháng 8 2021 lúc 15:58

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

Bình luận (0)
PP
Xem chi tiết
AH
26 tháng 1 2021 lúc 13:47

Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)

Hoàn toàn tương tự với các phân thức còn lại, ta có:

\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)

(đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$

 

Bình luận (0)
H24
Xem chi tiết
DQ
22 tháng 1 2021 lúc 16:08

Các bạn trả lời tích cực nhé giáo viên Toán của Hoc24 sẽ nhận xét và cộng GP cho các em ^^

Bình luận (0)
VQ
Xem chi tiết
VQ
Xem chi tiết
DA
Xem chi tiết
TN
12 tháng 5 2017 lúc 18:56

Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4

Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)

Tương tự ta được:

P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4

Bình luận (0)