Những câu hỏi liên quan
LH
Xem chi tiết
NT
5 tháng 2 2021 lúc 21:45

a) Ta có: \(x^2-11x-26=0\)

nên a=1; b=-11; c=-26

Áp dụng hệ thức Viet, ta được:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)

và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)

 

Bình luận (0)
VN
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
NL
Xem chi tiết
NM
3 tháng 5 2022 lúc 21:19

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

Bình luận (0)
LN
Xem chi tiết
LN
6 tháng 4 2022 lúc 8:32

giải giùm mình ạ:(

 

Bình luận (0)
NL
6 tháng 4 2022 lúc 17:44

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)

\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)

\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)

\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)

\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)

\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)

\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)

Bình luận (0)
NQ
Xem chi tiết
KL
Xem chi tiết
AH
9 tháng 11 2021 lúc 15:08

Lời giải:
Giả sử $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k$. Khi đó: $y=kx$

$y_1=kx_1=-1\Rightarrow x_1=\frac{-1}{k}$

$y_2=kx_2=5\Rightarrow x_2=\frac{5}{k}$

$x_1-x_2=-2$

$\frac{-1}{k}-\frac{5}{k}=-2$

$\Leftrightarrow \frac{-6}{k}=-2$

$\Leftrightarrow k=3$. Khi đó:

$x_1=\frac{-1}{k}=\frac{-1}{3}$

$x_2=\frac{5}{k}=\frac{5}{3}$

Bình luận (0)
NA
Xem chi tiết
NT
5 tháng 2 2022 lúc 15:30

a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)

=>(x-3)*(x-1)=0

=>x=3 hoặc x=1

b: \(x_1+x_2=m\)

\(x_1x_2=m-1\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)

\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)

\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)

\(=m^4-4m^3+2m^2-4m+2\)

Bình luận (0)