Cho x1+x2 =5 , x1.x2=1 . TÍnh /x1/+/x2/
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
có x^2 - 6x+10... không giải thích hãy tính
a, x1^2-x2^2
b, căn x1+căn x2
c,x1 căn x2+ x2 căn x2
d, x1/x2-5 + x2/x1-5
e,(x1+1) / (x2-1) + (x2+1) / (x1-1)
g, x1^2 *(x1-2*x2) +x2^2*(x2-2*x1)
ai giải giúp t nhanh với .... mik kém dạng này quá
Nếu phương trình sau:x^2-2x-1=0 có 2 nghiệm x1,x2(x1<x2) thì hãy tính giá trị các đại lượng sau mà ko giải PT(bài này làm theo định lí Vi-et)
1.((x1^2+2)/x1)+((x2^2+2)/x2)
2.(x2/(x2^2-3))+(x1/(x1^2-3))
3.(x1^2/(x1.x2^2-1))+(x2^2/(x1^2.x2-1))
4.(x1/(3.x1.x2^2-1)+(x2/3.x1^2.x2-1)
5.(1/x1)-(1/x2)
6.(x1/(x2-1))+(x2/(x1-1))
7.((3x1-7)/x2)-((3x2-7)/x1)
Mọi người giúp mình với
Nếu phương trình sau:x^2-2x-1=0 có 2 nghiệm x1,x2(x1<x2) thì hãy tính giá trị các đại lượng sau mà ko giải PT(bài này làm theo định lí Vi-et)
1.((x1^2+2)/x1)+((x2^2+2)/x2)
2.(x2/(x2^2-3))+(x1/(x1^2-3))
3.(x1^2/(x1.x2^2-1))+(x2^2/(x1^2.x2-1))
4.(x1/(3.x1.x2^2-1)+(x2/3.x1^2.x2-1)
5.(1/x1)-(1/x2)
6.(x1/(x2-1))+(x2/(x1-1))
7.((3x1-7)/x2)-((3x2-7)/x1)
Mọi người giúp mình với
cho phương trình x2 - 2 (m - 1)x - 2m + 5 = 0 (m là tham số)
tính các giá trị của m để phương trình có 2 nghiệm phân biệt x1 , x2 (x1 < x2) thỏa mãn x1 - x2 = -2
Để phương trình 1 có 2 nghiệm phân biệt
=> \(\Delta,>0\) <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)
<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
=> Theo hệ thức Vi ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)
Theo bài ra ta có
\(x_1-x_2=-2\circledcirc\)
Từ \(\circledast vaf\circledcirc\) ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)
Thay x1 và x2 vào \(\circledast\circledast\)ta dc
\(\left(m-2\right)m=-2m+5\)
<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)
Vậy ...
2x^2-3x-1 Không giải phương trình hãy tính tổng tích A=1/x1-3+1/x2-3 B=x1²x2-4-x1x2+x1x2² C=1-x1²-x2² D=x1³x2³+x1³+x2³
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)
\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)
\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)
\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)
\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)
\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)
\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)
Cho f(x) xác định với moi x khác 0 thỏa mãn
f(1)=1
f(1/x)=1/x^2
f(x1+x2)=f(x1)+f(x2) với mọi x1,x2 khác 0 vá x1+x2 khác 0
tính f(5/7)
Cho x, y là 2ĐLT TLT Tính x1,x2. BIẾT : y1= -1; y2=5. x1-x2=-2
Lời giải:
Giả sử $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k$. Khi đó: $y=kx$
$y_1=kx_1=-1\Rightarrow x_1=\frac{-1}{k}$
$y_2=kx_2=5\Rightarrow x_2=\frac{5}{k}$
$x_1-x_2=-2$
$\frac{-1}{k}-\frac{5}{k}=-2$
$\Leftrightarrow \frac{-6}{k}=-2$
$\Leftrightarrow k=3$. Khi đó:
$x_1=\frac{-1}{k}=\frac{-1}{3}$
$x_2=\frac{5}{k}=\frac{5}{3}$
Cho phương trình x2- mx + m –1 =0 ( 1)
a) Giải pt khi m = 4
b) Cho biết x1, x2 là hai nghiệm của pt (1). tính x1 + x2 ; x1 . x2 ; x12 + x22 ; x14+ x24
a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)
=>(x-3)*(x-1)=0
=>x=3 hoặc x=1
b: \(x_1+x_2=m\)
\(x_1x_2=m-1\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)
\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)
\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)
\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)
\(=m^4-4m^3+2m^2-4m+2\)