Bài 6: Hệ thức Vi-et và ứng dụng

LN

2x^2-3x-1 Không giải phương trình hãy tính tổng tích A=1/x1-3+1/x2-3 B=x1²x2-4-x1x2+x1x2² C=1-x1²-x2² D=x1³x2³+x1³+x2³

LN
6 tháng 4 2022 lúc 8:32

giải giùm mình ạ:(

 

Bình luận (0)
NL
6 tháng 4 2022 lúc 17:44

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{1}{2}\end{matrix}\right.\)

\(A=\dfrac{1}{x_1-3}+\dfrac{1}{x_2-3}=\dfrac{x_2-3+x_1-3}{\left(x_1-3\right)\left(x_2-3\right)}=\dfrac{x_1+x_2-6}{x_1x_2-3\left(x_1+x_2\right)+9}\)

\(=\dfrac{\dfrac{3}{2}-6}{-\dfrac{1}{2}-3.\dfrac{3}{2}+9}=...\) (em tự bấm máy)

\(B=x_1^2x_2-4-x_1x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)-4-x_1x_2\)

\(=-\dfrac{1}{2}.\dfrac{3}{2}-4-\left(-\dfrac{1}{2}\right)=...\)

\(C=1-\left(x_1^2+x_2^2\right)=1-\left(x_1+x_2\right)^2+2x_1x_2=1-\left(\dfrac{3}{2}\right)^2+2.\left(-\dfrac{1}{2}\right)=...\)

\(D=x_1^3x_2^3+x_1^3+x_2^3=\left(x_1x_2\right)^3+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(-\dfrac{1}{2}\right)^3+\left(\dfrac{3}{2}\right)^3-3.\left(-\dfrac{1}{2}\right).\dfrac{3}{2}=...\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
NV
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
1L
Xem chi tiết
CP
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết