Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
KC
Xem chi tiết
NT
22 tháng 6 2022 lúc 22:22

a: Vì 3 là số nguyên tố nên theo ĐỊnh lí nhỏ Fermat, ta được:

\(a^3-a⋮3\)

b: Vì 7 là số nguyên tố nên theo định lí nhỏ Fermat,ta được:

\(a^7-a⋮7\)

Bình luận (0)
KC
Xem chi tiết
HT
5 tháng 3 2018 lúc 20:19

ta có:A= \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

vì a, a-1,a+1 là ba số nguyên liên tiếp => A chia hết cho 3

Bình luận (0)
PP
Xem chi tiết
NT
Xem chi tiết
NT
13 tháng 8 2016 lúc 21:11

cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?

Bình luận (0)
NT
13 tháng 8 2016 lúc 21:12

chứng minh:

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n

Bình luận (0)
OO
14 tháng 8 2016 lúc 15:42

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=\left(6x^2-6x^2\right)+\left(33x-10x-14x-9x\right)-\left(55+21\right)\)

\(=-76\)

Vậy A không phụ thuộc vào biến x (đpcm)

Bình luận (0)
PP
Xem chi tiết
PP
23 tháng 1 2021 lúc 11:41

\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)

Bình luận (0)
KC
Xem chi tiết
NT
23 tháng 6 2022 lúc 9:57

Vì n lẻ nên n=2k+1

\(n^4-10n^2+9\)

\(=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)

\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì k-1;k+1;k;k+2 là bốn số liên tiếp

nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)

\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)

Bình luận (0)
NC
Xem chi tiết
DT
Xem chi tiết
TT
24 tháng 8 2017 lúc 19:18

mình chọn B là đúng.

Bình luận (0)
MT
Xem chi tiết
ML
2 tháng 4 2016 lúc 21:56

\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)

\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)

\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)

\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)

Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi

\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)

Vậy, \(a=-1;\text{ }b=1.\)

Bình luận (0)
NM
2 tháng 4 2016 lúc 20:55

f(x) chia hết cho g(x)

Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)

=> f( \(1-\sqrt{6}\)) =0

=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)

Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?

Bình luận (0)
NM
2 tháng 4 2016 lúc 21:39

Mình làm sai sao nhiều người tích vậy? Buồn quá!

\(x=-\sqrt{7-4\sqrt{3}}=\sqrt{3}-2\)

\(\left(\sqrt{3}-2\right)^2-4ab\left(\sqrt{3}-2\right)+2a+3=0\)

\(10-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a=0\)

Bình luận (0)