Bài 12: Chia đa thức một biến đã sắp xếp

KC

+Chứng minh:
\(n^4-10n^2+9\text{ }⋮\text{ }384\text{ }v\text{ới }n\text{ }l\text{ẻ }\left(n\in Z\right) \)

NT
23 tháng 6 2022 lúc 9:57

Vì n lẻ nên n=2k+1

\(n^4-10n^2+9\)

\(=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)

\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì k-1;k+1;k;k+2 là bốn số liên tiếp

nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)

\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)

Bình luận (0)

Các câu hỏi tương tự
KC
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
LT
Xem chi tiết
T0
Xem chi tiết
PD
Xem chi tiết
LT
Xem chi tiết
NC
Xem chi tiết