Chứng minh rằng không tồn tại các số hữu tỉ nào thỏa mãn: \(x^2+y^2+z^2+x+3y+5z=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng không tồn tại các sô hữu tỉ x,y,z tỏa mãn x^2 + y^2 +z^2 + x + 3y +5z +7 =0
Cho các số nguyên x,y,z khác không, thỏa mãn x+y+z=0.
Chứng minh rằng căn (1/ x^2 + 1/y^2 + 1/z^2) là số hữu tỉ
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
Chứng minh rằng không tồn tại 2 số hữu tỉ x,y trái dấu k đối nhau thỏa mãn đẳng thức 1/x+y= 1/x+1/y
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)
=> (x + y)2 = xy
Vì (x + y)2 >= 0 (1)
Mà xy < 0 (vì x, y trái dấu) (20
Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.
Cho **** nha
chứng minh rằng ko tồn tại 2 số hữu tỉ x và y trái dấu không đối nhau để thỏa mãn đẳng thức 1/x-y=1/x+1/y
Chứng minh rằng không tồn tại số hữu tỷ x thỏa mãn x^2 = 2
Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)
⇒ Không số nào có bình phương bằng 2
⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2
⇒ (đpcm)
chứng minh rằng không tồn tại các số tự nhiên x;y;z thỏa mãn 3^x-2^y-2015^z=85
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Cho các số x, y, z là các số hữu tỉ thỏa mãn điều kiện: xyz = 1; x/y3 + y/z3 + z/x3 = x3/z + y3/x + z3/y. Chứng minh rằng trong 3 số x, y, z tồn tại ít nhất 1 số là lập phương của một số hữu tỉ còn lại.