Những câu hỏi liên quan
HD
Xem chi tiết
NH
18 tháng 4 2020 lúc 12:37

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
H9
18 tháng 2 2023 lúc 12:40

+Với \(p=2\)  ta có: \(p+8=10\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=12\)

+Với \(p=3\) ta có: \(p+8=11\)là số nguyên tố \(\Rightarrow\) thỏa mãn \(p+10=13\)

Với \(p>3\) do p là số nguyên tố \(\Rightarrow p=3k+1\) hoặc \(3k+2\)

Với \(p=3k+1\) thì \(p+8=3k+9\)              

Do \(3k+9\) chia hết cho 3 mà \(3k+9>3\rightarrow3k+9\) là hợp số \(\Rightarrow\) không thỏa mãn                                               \(p+10=3k+11\)

+Với \(p=3k+2\)  thì \(p+8=3k+10\)

                                \(p+10=3k+12\)    

Do \(3k+12\) chia hết cho \(3\) mà \(3k+12>3\rightarrow3k\) là hợp số ⇒ không thoả mãn

Vậy \(p=3\)

Bình luận (0)
NH
Xem chi tiết
PH
Xem chi tiết
OO
14 tháng 2 2016 lúc 14:09

 

p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa.  Xét p=3 thõa mãn

Bình luận (0)
DM
Xem chi tiết
VN
8 tháng 4 2016 lúc 17:43

vì p là số nguyên tố nên ta xét :

-p=2=>p+8=10laf hợp số (loại)

-p=3=>p+8=11      .Đều là số nguyên tố (t/m) 

           p+10=13

-p>3=>p có dạng 3k+1;3k+2(k thuộc N) (vì p là số nguyên tố)

*nếu p=3k+1=>p+8=3k+1+8=3k+9 chia hết cho 3 và 3k+9>3=>p+8 là hợp số (loại)

*nếu p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3 và 3k+2>3=>p+10 là hợp số (loại)

                                  Vậy p=3

Bình luận (0)
MH
Xem chi tiết
NL
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Bình luận (0)
NL
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

Bình luận (9)
TK
Xem chi tiết
H24
16 tháng 2 2016 lúc 17:24

p không tìm được đâu , 2 mũ mấy cũng không là số nguyên tố đâu

Bình luận (0)
NM
16 tháng 3 2016 lúc 21:34

chỉ có P=3 

dài lắm

Bình luận (0)
H24
31 tháng 7 2017 lúc 14:35

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 

Bình luận (0)
VN
Xem chi tiết
CB
Xem chi tiết
SK
4 tháng 7 2018 lúc 11:05

Trả lời

Trường hợp p = 2 thì \(2^p\) + \(p^2\) = 8 là hợp số. 
Trường hợp p = 3 thì \(2^p+p^2\) = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó \(p^2\) - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên \(2^p\) + 1 chia hết cho 3. Thành thử \(\left(2^p+1\right)+\left(p^2-1\right)\) = \(2^p+p^2\) chia hết cho 3; \(\Rightarrow2^p+p^2\)là hợp số. 
Vậy p = 3. 

Bình luận (0)