VD

Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là các số nguyên tố.

H9
18 tháng 2 2023 lúc 12:40

+Với \(p=2\)  ta có: \(p+8=10\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=12\)

+Với \(p=3\) ta có: \(p+8=11\)là số nguyên tố \(\Rightarrow\) thỏa mãn \(p+10=13\)

Với \(p>3\) do p là số nguyên tố \(\Rightarrow p=3k+1\) hoặc \(3k+2\)

Với \(p=3k+1\) thì \(p+8=3k+9\)              

Do \(3k+9\) chia hết cho 3 mà \(3k+9>3\rightarrow3k+9\) là hợp số \(\Rightarrow\) không thỏa mãn                                               \(p+10=3k+11\)

+Với \(p=3k+2\)  thì \(p+8=3k+10\)

                                \(p+10=3k+12\)    

Do \(3k+12\) chia hết cho \(3\) mà \(3k+12>3\rightarrow3k\) là hợp số ⇒ không thoả mãn

Vậy \(p=3\)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NH
Xem chi tiết
DM
Xem chi tiết
YV
Xem chi tiết
NN
Xem chi tiết
MC
Xem chi tiết
MC
Xem chi tiết
PH
Xem chi tiết
PL
Xem chi tiết