Cho tam giác ABC, B > 90*. Gọi D là điểm trên tia đối của tia CB. Chứng minh rằng AB < AC < AD.
Cho tam giác ABC, góc B > 90*. Gọi D là điểm trên tia đối của tia CB. Chứng minh rằng AB < AC < AD.
Vì góc B > 90 độ => góc B lớn nhất (góc A và góc C đều bé hơn góc B)
Vì góc B lớn hơn góc C => AC>AB (đối diện vs góc lớn hơn là cạnh lớn hơn)
Vì góc B là góc tù (>90độ) => góc C và góc A là góc nhọn
=> góc ACD=180 độ - góc C
=> góc ACD là góc tù => góc ACD là góc lớn nhất trong tg ACD
=> góc ADC < góc ACD => AD>AC (đối diện vs góc lớn hơn là cạnh lớn hơn)
=> AB<AC<AD chúc bạn học tốt nhé!
cho tam giác abc có góc a > 90 độ. Gọi D là 1 điểm bất kì trên tia đối của tia cb. Chứng minh ab<ac<ad
Cho tam giác ABC có AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. a) Chứng minh: AD = AC. b) Kẻ BH ^ AD ( H Î AD ), kẻ CK ^ AE ( K Î AE). Chứng minh rằng BH = CK và HK//BC c) Gọi O là giao điểm của BH và CK. M là trung điểm BC. Chứng minh rằng ba điểm A, M, O thẳng hàng.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔAHB vuông tại H và ΔACK vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK và AH=AK
Xét ΔADE co AH/AD=AK/AE
nên HK//DE
=>HK//BC
c: góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
=>góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC(1)
ΔBCA cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(2)
Từ (1), (2) suy ra A,M,O thẳng hàng
Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a, Chứng minh tam giác AMB=tam giác CMD
b, Chứng minh AD=CB và AD//CB
c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a, Chứng minh tam giác AMB=tam giác CMD
b, Chứng minh AD=CB và AD//CB
c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng
d, Vẽ CE vuông AD (E thuộc AD) và AF vuông BC (F thuộc BC). Gọi F là giao điểm của MA và CE
vẽ giúp mình cái hình nhé!!!!!!!
Cho tam giác ABC có A=90 độ . Trên tia đối tia AB lấy D sao cho AB=AD . Trên tia đối tia AC lấy E sao cho AC=AE .
a) Chứng minh tam giác ABC=tam giác ADE .
b) Chứng minhED=BC .
c) Gọi I là trung điểm DC . Chứng minh DI=1/2 BC .
d) Gọi N là giao điểm CA vad BI . Mlaf trung điểm BC . Chứng minh D,N,M thảng hàng .
mọi người giúp mình với . Cảm ơn nhiều
b: Xét tứ giác DECB có
A là trung điểm của CD
A là trung điểm của EB
Do đó: DECB là hình bình hành
Suy ra: ED=BC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE.
a) Chứng minh rằng tam giác ADE là tam giác cân.
b) Kẻ BH⊥AD (H∈AD), kẻ CK AE (K ⊥AE). Chứng minh rằng BH = CKvà HK // BC.
c) Gọi O là giao điểm của BH và CK. Tam giác OHK, OBC là tam giác gì? Vì sao?
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà HB=CK
nên OB+HB=OC+CK
=>OH=OK
hay ΔOHK cân tại O
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng Tam giác ADE = Tam giác ABC.
b) Chứng minh DE // BC.
c) Gọi M là trung điểm của DE và N là trung điểm của BC.
Chứng minh A, M, N thẳng hàng.
Cho tam giác ABC, góc B > 90*. Gọi D là điểm trên tia đối của tia CB. Chứng minh rằng AB < AC < AD.