Những câu hỏi liên quan
H24
Xem chi tiết
HL
Xem chi tiết
DT
7 tháng 9 2017 lúc 10:11

a) + b) + c)

A B C D H K

Vì chứng minh được câu a) thì khỏi cần chứng minh câu b) và c)

\(S_{ABD}=S_{BDC}\)

- Đáy AB = DC

- Có chiều cao bằng chiều cao của hình bình hành ( AH = BK)

\(S_{ADC}=S_{ABC}\)

- Đáy AB = DC 

- Có chiều cao bằng chiều cao hình bình hành

Vì vậy có thể kết luận rằng :\(S_{ABD}=S_{BDC}=S_{ABC}=S_{ACD}\)

\(S_{ABD}=S_{OAB}+S_{AOD}\)

\(S_{ADC}=S_{AOD}+S_{DOC}\)

Vì có chung diện tích AOD nên S OAB = S DOC

Tương tự...

Bình luận (0)
NH
Xem chi tiết
NH
26 tháng 3 2020 lúc 21:00

Từ O lẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1 ⊥ AB

Mà AB // CD

Nên OH2 ⊥ CD

Do đó :

SABO+ SCDO= \(\frac{1}{2}\)OH1.AB+\(\frac{1}{2}\)OH2.CD = \(\frac{1}{2}AB\left(OH_1+OH_2\right)\) = \(\frac{1}{2}AB.H_1H_2\)

Nên SABO+ SCDO = \(\frac{1}{2}\)SABCD (1)

Tương tự SBCO + SDAO = \(\frac{1}{2}S_{ABCD}\) (2)

Từ (1) và (2) suy ra :

SABO + SCDO = SBCO + SDAO

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
UI
16 tháng 12 2019 lúc 20:30

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

Bình luận (0)
 Khách vãng lai đã xóa
TM
16 tháng 12 2019 lúc 20:50

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

Bình luận (0)
 Khách vãng lai đã xóa
UI
16 tháng 12 2019 lúc 21:07

dung toi do ban chac ban ve hinh khac mik nen chac nhin khong giong thoi chu mik kiem tra lai roi do

Bình luận (0)
 Khách vãng lai đã xóa
EC
Xem chi tiết
NP
Xem chi tiết
NC
Xem chi tiết
LV
Xem chi tiết
TF
Xem chi tiết