Cho hình thang ABCD . Hai đg chéo cắt AC,BD cắt nhau tại O . CMR
a, \(S_{AOD}=S_{BOC}\)
b, \(\dfrac{S_{AOB}}{S_{SOD}}=\dfrac{OB}{OD}\)
c, \(S_{AOB}.S_{DOC=}\left(S_{AOD}\right)^2_{ }\)
d, Cho \(S_{AOB}=9cm^2\)
\(S_{DOC}=25cm^2\)
Tính \(S_{ABCD}\)
Cho tam giác ABC có ba đường trung tuyến AI, BM, CN cắt nhau tại G
Chứng minh: \(S_{ANG}=S_{AGM}=S_{CGM}=S_{CGI}=S_{BGI}=S_{BNG}\)
Cho hình thang ABCD, E, F, G, H lần lượt là trung điểm của AB, BC, CD, AD. Chứng minh rằng \(S_{EFGH}=\dfrac{1}{2}S_{ABCD}\).
Hình Thang ABCD (AB // CD). EF // 2 đáy hình thang ABCD (E thuộc AD, F thuộc BC) sao cho \(S_{ABFE}=S_{EFCD}\)
CMR: \(EF=\sqrt{\dfrac{AB^2+CD^2}{2}}\)
Cho hình thoi ABCD có AC = 12cm, BD = 16cm. Gọi M,N lần lượt là trung điểm của CB và CD. Tính :
a, \(S_{ABCD}=?\)
b, \(S_{AMCN}=?\)
c, \(S_{AMN}=?\)
Trên cạnh AB,AC của tam giác ABC lấy tương ứng 2 điểm M,N sao cho \(AM=\dfrac{1}{3}AB,AN=\dfrac{1}{3}AC\) . Gọi D là giao điểm của BN và CM. Qua A kẻ \(AH\perp BN,CK\perp BN\)
a) So sánh AH và CK
b) CM: \(S_{ABD}=\dfrac{1}{2}S_{BCD}\)
c) Biết \(S_{ABC}=24cm^2\)
Tính \(S_{AMDN}\)
1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi)
b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông
2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng
a. \(S_{MNPQ}=\dfrac{1}{3}S_{ABCD}\) b. \(S_{A'B'C'D'}=\dfrac{1}{9}S_{ABCD}\)
3/ Lấy M tùy ý nằm trong tam giác ABC. Gọi D,E,F là hình chiếu của M trên BC,AC,AB. Đặt BC=a,AC=b,AB=c,MD=x,ME=y,MF=z. Chứng minh rằng
a. ax+by+cz=2S (S=Sabc)
b. \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\ge\dfrac{2p^2}{S}\) (\(p=\dfrac{a+b+c}{2}\) )
Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO ?
Cho tam giác ABC có AD là phân giác . Gọi x,y là đường phân giác góc ngoài tại A . Gọi I,K theo thứ tự là hình chiếu của B và C trên xy . C/m \(S_{ABC}=\frac{AD.IK}{2}\)