Những câu hỏi liên quan
DH
Xem chi tiết
H24
Xem chi tiết
TN
16 tháng 8 2019 lúc 22:57

A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)

=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)

<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)

ta lại có

\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)

dấu "=" xảy ra <=>a=b=c

Bình luận (0)
NM
Xem chi tiết
NM
31 tháng 7 2019 lúc 17:21

Akai HarumaNguyễn Thành Trương

Bình luận (0)
NM
31 tháng 7 2019 lúc 18:53

<= 3/4 nha ko phải a+b+c

Bình luận (0)
NM
31 tháng 7 2019 lúc 21:25

minhf lm dc cau nay rồi

Bình luận (0)
TD
Xem chi tiết
AH
4 tháng 11 2017 lúc 23:13

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)

\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)

Cộng theo vế rồi rút gọn ta thu được

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Bình luận (0)
TD
4 tháng 11 2017 lúc 22:41

@Ace Legona bác giúp em với

Bình luận (0)
TP
Xem chi tiết
WR
11 tháng 7 2018 lúc 19:59

Ad BĐT Cauchy cho 6 số: 

\(\frac{a^3b}{c}+\frac{a^3c}{b}+\frac{b^3c}{a}+\frac{b^3a}{c}+\frac{c^3a}{b}+\frac{c^3b}{a}\ge6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6abc\)

Dấu = xr khi a=b=c

Bình luận (0)
LD
13 tháng 10 2020 lúc 21:08

Áp dụng bất đẳng thức Cauchy cho VT ta được :

\(VT\ge6\sqrt[6]{\frac{a^3b}{c}\cdot\frac{a^3c}{b}\cdot\frac{b^3c}{a}\cdot\frac{b^3a}{c}\cdot\frac{c^3a}{b}\cdot\frac{c^3b}{a}}=6\sqrt[6]{\frac{a^8b^8c^8}{a^2b^2c^2}}=6\sqrt[6]{a^6b^6c^6}=6abc=VP\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c

\(\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết

Violympic toán 8

Bình luận (0)
 Khách vãng lai đã xóa

Xin ngoại lệ ạ ( Ko liên quan đến câu hỏi)

Violympic toán 8

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
AH
31 tháng 12 2016 lúc 20:08

BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)

BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)

Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)

Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

Bình luận (1)
NA
Xem chi tiết
HN
31 tháng 12 2016 lúc 22:19

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

     \(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\cdot\left(b+c+d+a\right)}=\frac{1}{3}\)

Do đó :

       \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}.\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{a}{b}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow a=b\)

       \(\frac{b}{3c}=\frac{1}{3}\Rightarrow\frac{b}{c}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{b}{c}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow b=c\)

       \(\frac{c}{3d}=\frac{1}{3}\Rightarrow\frac{c}{d}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{c}{d}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow c=d\)

       \(\frac{d}{3a}=\frac{1}{3}\Rightarrow\frac{d}{a}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{d}{a}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow d=a\)

\(\Rightarrow a=b=c=d\)

Bình luận (0)
H24
Xem chi tiết
SK
18 tháng 1 2020 lúc 13:33

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa