Chương I - Căn bậc hai. Căn bậc ba

TD

Cho a,b,c>0 CMR

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b} \ge3(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}) \)

AH
4 tháng 11 2017 lúc 23:13

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)

\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)

Cộng theo vế rồi rút gọn ta thu được

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Bình luận (0)
TD
4 tháng 11 2017 lúc 22:41

@Ace Legona bác giúp em với

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
DA
Xem chi tiết
PK
Xem chi tiết
DT
Xem chi tiết
HT
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết