Số giá trị của x thỏa mãn \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho số thực dương x thỏa mãn x4-x-1=0.Tính giá trị của A=\(x^2\sqrt{x^{11}+2x^3-4x}\)
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^4+xy+y^2+15\)
Cho A=\(\sqrt{x^4+4x^3+6x^2+4x+2}\) +\(\sqrt{y^4-8x^3+24y^2-32y+17}\)với x, y là số thực thỏa mãn (2+x)(y-1)=9/4
Tính giá trị của A
Cho biểu thức
M=\(\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right).\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)với x\(\ge\)0;x\(\ne\)4;x\(\ne\)49
a.Rút gọn M
b.Tính giá trị biểu thức của M tại x thỏa mãn \(^{x^2}\)-4x=0
c.Tìm x biết M=\(-\dfrac{\sqrt{x}}{4}\)
d.Tìm x biết M<-1
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)
Vậy: Khi \(x^2-4x=0\) thì M=0
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^2+xy+y^2+15\)
co biểu thức P=\(\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{4x\sqrt{x}+3x+9}{x-\sqrt{x}-6}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}+3}{x+5\sqrt{x}+6}\right)\)
tìm giá trị của m để có giá trị x>1 thỏa mãn: \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)