\(\dfrac{30}{x}\)-\(\dfrac{30}{x+3}\)=\(\dfrac{1}{2}\)
a. x(x-1)(x+1)(x+2)=24
b.\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
c.\(\dfrac{x-29}{30}+\dfrac{x-30}{29}=\dfrac{29}{x-30}+\dfrac{30}{x-29}\)
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
b)(ĐKXĐ:x khác 2;3;4;5;6)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-6\right)\left(x-2\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow x=-2\) or x=10(đều thỏa)
Vậy ...
Tìm x biết:
\(a,\dfrac{4}{5}+x=\dfrac{2}{3}\)
\(b,\dfrac{-5}{6}-x=\dfrac{2}{3}\)
\(c,\dfrac{1}{2}x+\dfrac{3}{4}=\dfrac{-3}{10}\)
\(d,\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\)
\(e,\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(h,x+30\%x=-1,3\)
\(k,3\dfrac{1}{3}x+16\dfrac{1}{4}=13,25\)
\(m,\dfrac{x-6}{2}=\dfrac{50}{x-6}\)
\(n,x-13,4=24,5-6,7.5,2\)
\(p,15,7x+3,6x=-96,5\)
\(q,2,5x-11,6=-59,1\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
a) Tính A = ( 1 - \(\dfrac{1}{2}\) )( 1 - \(\dfrac{1}{3}\) ) (1-\(\dfrac{1}{4}\) ) ....(1-\(\dfrac{1}{2014}\) ) (1-\(\dfrac{1}{2015}\) ) (1-\(\dfrac{1}{2016}\) )
b)Tìm x biết \(\dfrac{x-2}{12}\) + \(\dfrac{x-2}{20}\) + \(\dfrac{x-2}{30}\)+ \(\dfrac{x-2}{42}\) + \(\dfrac{x-2}{56}\) +\(\dfrac{x-2}{72}\) = \(\dfrac{16}{9}\)
a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)
\(=\dfrac{1}{2016}\)
b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)
\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)
hay x=10
Vậy: x=10
Bài 4 :
a) \(\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}\)
b) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
a) \(\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{11}{21}\)
\(\Rightarrow x=\dfrac{3\cdot11}{21}\)
\(\Rightarrow x=\dfrac{33}{21}\)
\(\Rightarrow x=\dfrac{11}{7}\)
b) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{5\cdot1}{5}\)
\(\Rightarrow x=1\)
bài 45: Tìm x, biết:
a) x=\(\dfrac{-1}{2}+\dfrac{3}{4}\); b) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
a, x= \(\dfrac{1}{4}\)
b, x= \(\dfrac{1}{5}\)
x=-2/4+3/4 x=1/4
6x/30=25/30+-19/30 6x/30=6/30 6x=6 x=1
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
Bài 1: Thực hiện phép chia:
a) \(\dfrac{5}{x}+\dfrac{x}{x+6}-\dfrac{30}{x^2+6x}\) với x ≠ -6 và x ≠ 0
b) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\) với x ≠ \(\pm\)1
c) \(\dfrac{3x^2+2x+1}{x^3-1}-\dfrac{1-x}{x^2+x+1}-\dfrac{2}{x-1}\) với x ≠ 1
\(a,=\dfrac{5x+30+x^2-30}{x\left(x+6\right)}=\dfrac{x\left(x+5\right)}{x\left(x+6\right)}=\dfrac{x+5}{x+6}\\ b,=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)
\(c,=\dfrac{3x^2+2x+1+x^2-2x+1-2x^2-2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)
Giải các phương trình sau:
a) \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
b) \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
a: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>x=0(nhận)
b: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-1-8\)
=>2x-15=-9
=>2x=-6
hay x=-3(nhận)
1. Tìm X
a, \(\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\right)\cdot10-x=0\)
b, \(\left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-2.04:\left(x+1.5\right)+11.02=30\)
c, \(\dfrac{4}{3}+x\cdot\dfrac{2}{3}-\dfrac{1}{4}=4\dfrac{5}{12}\)
a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0
<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân