Chứng minh rằng B chia hết cho 9 với B = 8888...8 + 2017 - 9
(2017 chữ số 8)
CMR B chia hết cho 9 với B= 8888...8(2017 chữ số 8) + 2017-9
Có tổng các chữ số của số 888....8 ( 2017 chữ số 8 ) = 8 x 2017 = 116136 chia 9 dư 8
=> 8888...8 chia 9 dư 8
=> B chia 9 dư 8+2017-9 = 2016
Mà 2016 chia hết cho 9 => B chia hết cho 9
Tk mk nha
B=8888...8(2017 chữ số 8) + 2008
B= 8.2017 + 2008
B= 8.(2016 + 1) + 2008
B= 8.2016 + ( 8 + 2008 )
B= 8. 2016 + 2016
Vì 8.2016 chia hết cho 9 ( vì có tích cò thừa số 2016 chia hết cho 9 )
Vì 2016 chia hết cho 9
=> B chia hết cho 9
CMR B chia hết cho 9 với B= 8888...8(2017 chữ số 8) + 2017-9
B = 8888...8 (2017 c/số 8) + 2017-9
B = 8888...80 ( 2016 c/số 8 và 1 c/số 0) + 2017 - 9 + 8
B = 8888...80 ( 2016 c/số 8 và 1 c/số 0) + 2016
Mà 8888...80 ( 2016 c/số 8 và 1 c/số 0) chia hết cho 9, 2016 chia hết cho 9 nên 8888...80 ( 2016 c/số 8 và 1 c/số 0) + 2016 sẽ chia hết cho 9 => B sẽ chia hết cho 9.
Vậy B chia hết cho 9 ^_^
Cho B = 8888..8(n chữ số 8)-9+n. Chứng minh rằng B chia hết cho 9
Ta đã biết 1 số tụ nhiên bất kì đều viết được dưới dạng tổng của 1 số chia hết cho 9 với tổng các chữ số của nó
Nên 888...8 = 9k+(8+8+...+8) =9k +8n
=> B =9k+8n -9 +n
= 9( k -1 +n) chia hết cho 9
Vậy B chia hết cho 9
Cho B=8888.......88-9+n
n chữ số 8
chứng minh B chia hết cho 9
Tổng các chữ số của B:
8 + 8 + 8 + ... + 8 - 9 + n (n chữ số 8)
= 8n - 9 + n
= 9n - 9
= 9.(n - 1) ⋮ 9
Vậy B ⋮ 9
chứng minh rằng:10^2017 cộng 8 chia hết cho 9
Ta có : \(10^{2017}+8=10......10+8=10...8.\)
\(\Rightarrow1+0+...+8=9⋮9\)
\(\Rightarrow10^{2017}+8⋮9\)
10^2017+8 = 1+ 0+0+0+..+0( 2017 số 0)
=1+8=9 chia hết cho 9
Ta có :
102017 = 10.......0 ( 2017 chữ số 0 và 1 chữ số 1 )
\(\Rightarrow\) 102017 + 8 = 100000......008 ( 1 chữ số 1 ; 2016 chữ số 0 và 1 chữ số 8 )
\(\Rightarrow\) tổng các chữ số của tổng 102017 + 8 = 1 + 0.2016 + 8 = 9 chia hết cho 9
Vì tổng các chữ số của tổng 102017 + 8 chia hết cho 9 nên 102017 + 8 chia hết cho 9 ( đpcm )
Cho A= 8888...8 + n (nthuộc N)
Chứng minh rằng A chia hết cho 9
Ta có: 8888....8
có n số 8
Ta có: \(8888...8+n=8n+n=9n⋮9\)
Do đó: \(A=8888...8+n⋮9\)
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
Cho B = 8.8.....8(n số 8) - 9 + n. Chứng minh rằng B chia chia hết cho 9
CMR 8888....8(n chữ số 8) chia hết cho 9