Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
H24
14 tháng 2 2018 lúc 19:32

a) Ta có : d // BC 

=> B'C' // BC 

Xét \(\Delta AB'H'\)và \(\Delta ABH\)( B'H' // BH )

Theo hệ quả của định lý Ta-lét 

=> \(\frac{AB'}{AB}=\frac{AH'}{AH}\)(1)

Xét \(\Delta AB'C'\) và \(\Delta ABC\)( B'C' // BC )

Theo hệ quả của định lý Ta-lét

=> \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(2)

Từ (1) và (2) 

=> \(\frac{AH'}{AH}=\frac{B'C'}{BC}\)( ĐPCM )

b) \(\frac{SAB'C'}{SABC}=\frac{\frac{1}{2}AH'.B'C'}{\frac{1}{2}AH.BC}=\frac{AH'}{AH}.\frac{B'C'}{BC}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)

=> \(SAB'C'=\frac{1}{9}\Rightarrow SAB'C'=\frac{SABC}{9}=\frac{67,5}{9}=7,5\left(cm^2\right)\)

Bình luận (0)
KT
Xem chi tiết
H24
10 tháng 3 2021 lúc 20:17

13 AH là sao ạ ?

Bình luận (1)
PB
Xem chi tiết
CT
26 tháng 12 2017 lúc 15:59

a) Theo hệ quả định lý Ta let ta có:

ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)
KD
Xem chi tiết
NS
Xem chi tiết
NT
9 tháng 5 2023 lúc 14:46

2: Xét ΔCAD và ΔCEA có

góc C chung

góc CAD=góc CEA

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

Bình luận (0)
TQ
Xem chi tiết
HT
Xem chi tiết
BG
Xem chi tiết
AH
26 tháng 12 2022 lúc 13:26

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

Bình luận (0)
AH
26 tháng 12 2022 lúc 13:28

Hình bài 2:

Bình luận (0)
AH
26 tháng 12 2022 lúc 13:57

Bài 3:
Xét tam giác $ABH$ và $ACK$ có:
$\widehat{AHB}=\widehat{AKC}=90^0$
$\widehat{A}$ chung

$\Rightarrow \triangle ABH\sim \triangle ACK$ (g.g)

$\Rightarrow \frac{AB}{AH}=\frac{AC}{AK}$

Xét tam giác $AKH$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AH}{AB}=\frac{AK}{AC}$ (cmt)

$\Rightarrow \triangle AKH\sim \triangle ACB$ (c.g.c)

$\Rightarrow \widehat{K_2}=\widehat{ACB}$ và $\widehat{H_1}=\widehat{ABC}$

Xét tam giác $KEB$ và $CHB$ có:

$\widehat{KEB}=\widehat{CHB}=90^0$
$\widehat{K_1}=\widehat{K_2}=\widehat{ACB}=\widehat{HCB}$ (cmt)

$\Rightarrow \triangle KEB\sim \triangle CHB$ (g.g)

$\Rightarrow \frac{KE}{KB}=\frac{CH}{CB}(1)$
Tương tự: 

$\triangle CFH\sim \triangle CKB$ (c.g.c)

$\Rightarrow \frac{CH}{FH}=\frac{CB}{KB}(2)$

Từ $(1); (2)\Rightarrow \frac{KE}{KB}.\frac{CH}{FH}=\frac{CH}{CB}.\frac{CB}{KB}$

$\Rightarrow \frac{KE}{HF}=1$
$\Rightarrow KE=HF$ (đpcm)

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
NT
2 tháng 4 2021 lúc 11:57

phải là tam giác ABC vuông chứ ? 

A B C 6 8 H

a, Xét tam giác BHA và tam giác BAC ta có : 

^B chung

^BHA = ^BAC = 900

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )

tương tự với CHA ~ tam giác CAB ( g.g )

\(\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\)( tỉ số đồng dạng )

b, tam giác ABC vuông tại A, AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=26+64=100\Rightarrow BC=10\)cm

Ta có : \(\frac{AH}{AB}=\frac{AB}{BC}\Rightarrow AB.AC=AH.BC\)( cma )

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}\)cm 

Ta có : \(\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=HC.BC\)

\(\Rightarrow64=HC.10\Rightarrow HC=\frac{64}{10}=\frac{32}{5}\)cm 

Bình luận (0)
 Khách vãng lai đã xóa
PC
2 tháng 4 2021 lúc 5:50

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc BHA=90độ

B góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c =>

Bình luận (0)
 Khách vãng lai đã xóa