Những câu hỏi liên quan
NV
Xem chi tiết
TH
Xem chi tiết
HA
23 tháng 1 2024 lúc 21:13

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

Bình luận (2)
HT
Xem chi tiết
DH
15 tháng 2 2018 lúc 13:58

Ez nhé

\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có : \(A=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\forall n\in N\)

           \(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\forall n\in Z\)

Mà \(\left(7;13\right)=1\) nên \(A⋮91\) (đpcm)

Bình luận (0)
VD
Xem chi tiết
QN
Xem chi tiết
CP
Xem chi tiết
HH
10 tháng 6 2017 lúc 7:21

GỌI \(\left(m^2n+2m,mn+1\right)=d\)

TA CÓ :   MN + 1 CHIA HẾT CHO d

=> m^2n+m chia hết cho d

=> m chia hết cho d

=> mn chia hết cho d

=> 1 chia hết cho d

Mà d thuộc Z

=> d = 1

=> đpcm

Bình luận (0)
LP
Xem chi tiết
LP
2 tháng 8 2023 lúc 19:44

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

Bình luận (0)
XO
3 tháng 8 2023 lúc 15:59

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

Bình luận (0)
HP
Xem chi tiết
HT
19 tháng 5 2016 lúc 14:30

\(1^2+2^2+3^2+.......+n^2=1\times\left(2-1\right)+2\times\left(3-1\right)+.......+n\left(\left(n+1\right)-1\right)\)=\(\left(1.2+2.3+3.4+......+n\left(n+1\right)\right)-\left(1+2+3+.....+n\right)\)=\(\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Bình luận (0)
HT
19 tháng 5 2016 lúc 14:51

sử dụng qui nạp: 
1² + 2² + 3² + 4² + ...+ n² = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*) 
(*) đúng khi n= 1 
giả sử (*) đúng với n= k, ta có: 
1² + 2² + 3² + 4² + ...+ k² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1) 
ta cm (*) đúng với n = k +1, thật vậy từ (1) cho ta: 
1² + 2² + 3² + 4² + ...+ k² + (k + 1)² = \(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) + (k + 1)² 
= (k+1)\(\left(\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right)\)= (k + 1)\(\frac{2k^2+k+6k+6}{6}\)
= (k + 1)\(\frac{2k^2+7k+6}{6}\) = (k + 1)\(\frac{2k^2+4k+3k+6}{6}\)
= (k + 1)\(\frac{2k\left(k+2\right)+3\left(k+2\right)}{6}\) = (k + 1)\(\frac{\left(k+2\right)\left(2k+3\right)}{6}\)
vậy (*) đúng với n = k + 1, theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Bình luận (0)
HP
19 tháng 5 2016 lúc 14:36

Hồng Trinh đúng rồi nhưng mà dùng quy nạp cơ

Bình luận (0)
LD
Xem chi tiết
NM
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Bình luận (0)
NV
22 tháng 10 2021 lúc 13:50

tui chiuj

Bình luận (0)
 Khách vãng lai đã xóa