Những câu hỏi liên quan
MB
Xem chi tiết
NL
7 tháng 4 2022 lúc 18:16

a.

Phương trình có 2 nghiệm khi:

\(\Delta'=4-2m\ge0\Rightarrow m\le2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow16-4m-4=16\)

\(\Leftrightarrow m=-1\) (thỏa mãn)

Bình luận (0)
NT
7 tháng 4 2022 lúc 18:18

a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)

Để pt có nghiệm x1, x2 thì \(\Delta>0\)

\(\Leftrightarrow16-8m>0\)

\(\Leftrightarrow-8m>-16\)

\(\Leftrightarrow m< 2\)

b.

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4^2-2.2m-4-16=0\)

\(\Leftrightarrow-4m-4=0\)

\(\Leftrightarrow m=-1\)

Bình luận (0)
NA
Xem chi tiết
ND
13 tháng 4 2022 lúc 22:45

\(\Delta'=m^2-6x+9-2m+7=m^2-8m+16=\left(m-4\right)^2\)

để phương trình có 2 nghiệm phân biệt =>  \(m\ne4\)

vời m khác 4 theo viet :

\(\left\{{}\begin{matrix}x1+x2=2m-6\left(1\right)\\x1.x2=2m-7\left(2\right)\end{matrix}\right.\)

\(x2-2x1=1\left(3\right)\)

từ 1 và 3 ta có hpt : 

\(\left\{{}\begin{matrix}x1+x2=2m-6\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}3x1=2m-7\\-2x1+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\\dfrac{-4m+14}{3}+x2=1\end{matrix}\right.< =>\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\)

thay \(\left\{{}\begin{matrix}x1=\dfrac{2m-7}{3}\\x2=1-\dfrac{-4m+14}{3}=\dfrac{4m-11}{3}\end{matrix}\right.\) vào phương trình 2

<=>\(\dfrac{2m-7}{3}.\dfrac{4m-11}{3}=2m-7< =>8m^2-50m+77=18m-63< =>8m^2-68m+140=0< =>\left(m-5\right)\left(2m-7\right)=0< =>m=5\left(tm\right);m=\dfrac{7}{2}\left(tm\right)\)

Bình luận (0)
1K
Xem chi tiết
NT
8 tháng 4 2022 lúc 21:26

a: \(\text{Δ}=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)

\(=25m^2-10m+1-24m^2+8m=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)

\(\Leftrightarrow13m^2-6m=0\)

=>m(13m-6)=0

=>m=0 hoặc m=6/13

Bình luận (1)
LN
Xem chi tiết
H24
2 tháng 10 2017 lúc 13:21

63 . 62 = 65

22 = 4

39 . 3 . 33 = 313

242 = 576

Bình luận (0)
TH
Xem chi tiết
NA
Xem chi tiết
NT
23 tháng 3 2023 lúc 17:06

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

Bình luận (0)
NQ
Xem chi tiết
NT
25 tháng 1 2023 lúc 13:51

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

Bình luận (0)
OL
Xem chi tiết
NT
2 tháng 4 2021 lúc 21:32

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

Bình luận (1)
H24
2 tháng 4 2021 lúc 22:34

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)

              \(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)

              \(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)

\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)

  Vậy ...

Bình luận (0)
H24
3 tháng 7 2021 lúc 20:10

\Delta&#x27;=1^2-m=1-mΔ′=12−m=1−m

phương trình có 2 nghiệm <=>\Delta&#x27;\ge0Δ′≥0

<=>1-m\ge01−m≥0

<=>m\le1m≤1

+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1​+x2​=−2(1)x1​x2​=m(2)​

Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1​+2x2​=1(3)

từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1​+x2​=−23x1​+2x2​=1​ <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1​=5x2​=−7​. Thay vào (2) : 5.(-7)= m <=> m= -35

Bình luận (0)
XT
Xem chi tiết
NT
8 tháng 3 2022 lúc 21:49

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)

Bình luận (0)