Những câu hỏi liên quan
H24
Xem chi tiết
NT
31 tháng 10 2023 lúc 22:40

a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

Bình luận (0)
H24
Xem chi tiết
LH
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Bình luận (0)
H24
Xem chi tiết
AT
11 tháng 6 2021 lúc 18:18

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

Bình luận (0)
MY
11 tháng 6 2021 lúc 18:14

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

Bình luận (0)
QA
Xem chi tiết
NL
7 tháng 4 2022 lúc 16:08

Xét hàm:

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+...+\dfrac{1}{x^{100}}\)

\(\Rightarrow f'\left(x\right)=-\dfrac{1}{x^2}-\dfrac{2}{x^3}-\dfrac{3}{x^4}-...-\dfrac{100}{x^{101}}=-P\) (1)

Mặt khác \(f\left(x\right)\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}n=100\\u_1=\dfrac{1}{x}\\q=\dfrac{1}{x}\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=u_1.\dfrac{1-q^{100}}{1-q}=\dfrac{1}{x}.\dfrac{1-\dfrac{1}{x^{100}}}{1-\dfrac{1}{x}}=\dfrac{1-\dfrac{1}{x^{100}}}{x-1}=\dfrac{x^{100}-1}{x^{101}-x^{100}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{\left(x^{100}-1\right)'\left(x^{101}-x^{100}\right)-\left(x^{101}-x^{100}\right)'\left(x^{100}-1\right)}{\left(x^{101}-x^{100}\right)^2}=-\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\) (2)

(1);(2) \(\Rightarrow P=\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\)

Bình luận (0)
ND
Xem chi tiết
NT
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Bình luận (0)
LT
Xem chi tiết
NT
16 tháng 3 2023 lúc 13:25

q=1/3; u1=2/3

\(S_{100}=\dfrac{\dfrac{2}{3}\cdot\left(\dfrac{1}{3^{100}}-1\right)}{\dfrac{1}{3}-1}=-\dfrac{1}{3^{100}}+1=\dfrac{-1+3^{100}}{3^{100}}\)

Bình luận (0)
BD
Xem chi tiết
ND
Xem chi tiết
AH
29 tháng 11 2023 lúc 17:55

Lời giải:

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 16A=12A+4A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}<3\)

\(\Rightarrow A< \frac{3}{16}\)

Bình luận (0)
H24
Xem chi tiết
DT
22 tháng 8 2017 lúc 22:30

a) Đặt \(C=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)

\(\Rightarrow5C=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)

\(\Rightarrow5C-C=1-\dfrac{1}{5^{100}}\Rightarrow4C=1-\dfrac{1}{5^{100}}\Rightarrow C=\dfrac{1-\dfrac{1}{5^{100}}}{4}\)

\(\Rightarrow A=8.5^{100}.\dfrac{1-\dfrac{1}{5^{100}}}{4}+1=2.\left(5^{100}-1\right)+1=2.5^{100}-2+1=2.5^{100}-1\)

Bình luận (0)
DT
22 tháng 8 2017 lúc 22:38

b)\(B=\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)

\(B=4.\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)\)

Đặt \(\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)=D\)

\(\Rightarrow3D=1-\dfrac{1}{3}+...-\dfrac{1}{3^{99}}\)

\(\Rightarrow3D+D=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow D=\dfrac{1-\dfrac{1}{3^{100}}}{4}\)

Bình luận (0)