Những câu hỏi liên quan
TN
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
NT
30 tháng 10 2023 lúc 21:11

(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)

=>c=3;a=2;b=-4

=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)

=>Chọn C

Bình luận (0)
LH
Xem chi tiết
TS
Xem chi tiết
NM
26 tháng 10 2021 lúc 8:14

Vì parabol đi qua \(I\left(-2;1\right)\) nên \(\left\{{}\begin{matrix}\dfrac{b}{2a}=2\\-\dfrac{\Delta}{4a}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-b=0\\b^2-4ac-4a=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\16a^2-4ac-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a-c=1\left(a\ne0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a=1+c\end{matrix}\right.\)

Mà parabol cắt \(y=x-1\) tại 1 điểm trên trục tung nên \(x=0\Leftrightarrow y=1\)

\(\Leftrightarrow c=1\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\)

Vậy parabol là \(y=\dfrac{1}{2}x^2+2x+1\)

Bình luận (0)
KC
Xem chi tiết
LH
24 tháng 9 2021 lúc 19:39

\(y=ax^2+bx+c\left(d\right)\)

Do y có gtln là 5 khi x=-2 

\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)

Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)

Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)

Vậy...

Bình luận (0)
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 21:02

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Bình luận (0)
ND
Xem chi tiết
AH
17 tháng 12 2021 lúc 23:04

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

Bình luận (1)
AH
17 tháng 12 2021 lúc 23:07

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

Bình luận (0)
HM
Xem chi tiết
NT
17 tháng 3 2023 lúc 23:10

1: Theo đề, ta có:

-b/2*(-1)=5/2

=>-b/-2=5/2

=>b=5

2: y=-x^2+5x-4

loading...

Bình luận (0)