( 5xy2 +9xy - x2y2) : (-xy)
Làm tính chia: 5 x y 2 + 9 x y - x 2 y 2 : - x y
5 x y 2 + 9 x y - x 2 y 2 : - x y = 5 x y 2 - - x y + 9 x y : - x y + - x 2 y 2 : - x y = - 5 y - 9 + x y
Tính tổng của hai đa thức sau: 5x2y – 5xy2 + xy và xy – x2y2 + 5xy2
(5x2y – 5xy2 + xy) + (xy – x2y2 + 5xy2)
= 5x2y – 5xy2 + xy + xy – x2y2 + 5xy2
= 5x2y + (5xy2 – 5xy2) + (xy + xy) – x2y2
= 5x2y + 2xy – x2y2
Thực hiện phép tính:
a) ( 5x4 – 3x3 + x2 ):3x2 b) ( 5xy2 + 9xy – x2 y2) : ( -xy)
c) (\(x^3y^3-\dfrac{1}{2}x^2y^3-x^3y^2\)) :\(\dfrac{1}{3}x^2y^2\) d)\(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
e) (30x4y3 - 20x2y3 + 6x4y4) : 5x2y3
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
tính giá trị của đa thức sau:
a) 5xy2 + 2xy -3xy2 tại x=-2;y=-1
b)x2y2 + x4y4 + x6y6 tại x=1 ; y=-1
a) 5.(-2).(-1)2 + 2.(-2).(-1) – 3.(-2).(-1)2
= 5.(-2).1 + 4 – 3.(-2).1
= -10 + 4 + 6
= 0
b) x2y2 + x4y4 + x6y6 tại x = 1 và y = -1
= 12(-1)2 + 14(-1)4 + 16(-1)6
= 1.1 + 1.1 + 1.1
= 1+1+1
= 3
a)5xy2+2xy-3xy2
=(5.2.3).(-2-12.-2-1.-2-12)
=30.1
=30
b)12-12+14-14+16-16
=0+0+0=0
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-3y\right)-6\left(x-3y\right)=3\left(x-3y\right)\left(x-2\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)=y\left(xy+2\right)\left(x-3\right)\)
d: \(4x^2y^2-8xy^2+4y^2\)
\(=4y^2\left(x^2-2x+1\right)\)
\(=4y^2\left(x-1\right)^2\)
e: \(x^3y+10x^2y+35xy\)
\(=xy\left(x^2+10x+35\right)\)
f: \(2x^3-4x^2y+2xy^2-8x\)
\(=2x\left(x^2-2xy+y^2-4\right)\)
\(=2x\left(x-y-2\right)\left(x-y+2\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
a/ 4x3 – xy2
b/ 5x3 – 10x2 + 5x
c/4x2 +24x+36-4y2
d/ 4x2y2 - 8xy2 + 4y2
e/ x3y + 10x2y + 35xy
f/2x3 –4x2y+2xy2–8x
g/3x2 –9xy–6x+18y
h/ x2y2 – 3xy2 + 2xy – 6y
a: \(4x^3-xy^2\)
\(=x\left(4x^2-y^2\right)\)
\(=x\left(2x-y\right)\left(2x+y\right)\)
b: \(5x^3-10x^2+5x\)
\(=5x\left(x^2-2x+1\right)\)
\(=5x\left(x-1\right)^2\)
c: \(4x^2+24x+36-4y^2\)
\(=4\left(x^2+6x+9-y^2\right)\)
\(=4\left(x+3-y\right)\left(x+3+y\right)\)
a) \(4x^3-xy^2=x\left(4x^2-y^2\right)=x\left(2x-y\right)\left(2x+y\right)\)
b) \(5x^3-10x^2+5x=5x\left(x^2-2x+1\right)=5x\left(x-1\right)^2\)
c) \(4x^2+24x+36-4y^2=\left(2x+6\right)^2-4y^2=\left(2x+6-2y\right)\left(2x+6+2y\right)\)
d) \(4x^2y^2-8xy^2+4y^2=4y^2\left(x^2-2x+1\right)=4y^2\left(x-1\right)^2\)
e) \(x^3y+10x^2y+35xy=xy\left(x^2+10x+35\right)\)
f) \(2x^3-4x^2y+2xy^2-8x=2x\left(x^2-2xy+y^2-4\right)=2x\left[\left(x-y\right)^2-4\right]=2x\left(x-y-2\right)\left(x-y+2\right)\)
g) \(3x^2-9xy-6x+18y=3x\left(x-2\right)-9y\left(x-2\right)=3\left(x-2\right)\left(x-3y\right)\)
h) \(x^2y^2-3xy^2+2xy-6y=xy\left(xy+2\right)-3y\left(xy+2\right)=\left(xy+2\right)\left(xy-3y\right)\)
g: \(3x^2-9xy-6x+18y\)
\(=3x\left(x-3y\right)-6\left(x-3y\right)\)
\(=3\left(x-2\right)\left(x-3y\right)\)
h: \(x^2y^2-3xy^2+2xy-6y\)
\(=xy^2\left(x-3\right)+2y\left(x-3\right)\)
\(=y\left(xy+2\right)\left(x-3\right)\)
Tính:
a)A=xy+x2y2+x4y4+...+x2022y2022 tại x=3;y=1/3
b)B=xy+x2y2+x3y3+...+x2021y2021+x2022+y2022
Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:
$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$
$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$
Tính tổng của các đa thức:
M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2
Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2
⇒ M + N = (x3 + xy + y2 – x2y2 – 2) + (x2y2 + 5 – y2)
= x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 + (– x2y2 + x2y2) + (y2 – y2) + xy + (– 2 + 5)
= x3 + 0 + 0 + xy + 3
= x3 + xy + 3.
Cho hai đa thức P = x2y2 - 4x2y - xy2 + 2xy và Q = 4x2y2 + xy; Tính P + Q = ?
A) 5x2y2 - 4x2y - xy2 + 3xy
B) x2y2 + 3xy
C) 5x2y2 - 4x2y - xy2 + xy
D) x2y2 - 4x2y - xy2 + 3xy
\(P+Q=x^2y^2-4x^2y-xy^2+2xy+4x^2y^2+xy\)
\(P+Q=5x^2y^2-xy^2-4x^2y+3xy\)
Tìm đa thức A biết A + ( 7 x 2 y - 5 x y 2 - x y ) = ( x 2 y + 8 x y 2 - 5 x y )
A. - 6 x 2 y + 13 x y 2 - 6 x y
B. 6 x 2 y + 13 x y 2 - 4 x y
C. - 6 x 2 y + 13 x y 2 - 4 x y
D. - 6 x 2 y + 3 x y 2 - 4 x y
Ta có: A + (7x2y - 5xy2 - xy) = (x2y + 8xy2 - 5xy)
⇒ A = (x2 y + 8xy2 - 5xy) - (7x2y - 5xy2 - xy)
= -6x2y + 13xy2 - 4xy
Chọn C