Cho tam giác ABC có \(\widehat{A}=90^0\);\(\widehat{B}=45^0\),Vẽ tia phân giác AD.Trên tia đối của tia AD lấy điểm E sao cho AE=BC.Trên tia đối của tia CA lấy điểm F sao cho CF=AB.CMR: BE=BF và BE⊥BF
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tam giác vuông ABC (\(\widehat{A}=90^0\)) có AB = 6cm, AC = 8cm và tam giác vuông A'B'C' (\(\widehat{A'}=90^0\)) có A'B' = 9cm, B'C' = 15 cm
Hỏi rằng hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không ? Vì sao ?
+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
A′B′2+A′C′2 =B′C′2
=> A′C′2=B′C′2−A′B′2=152−92=144
=> A’C’ =12 (cm)
Trong tam giác vuông ABC có \(\widehat{A}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
BC2=AB2+AC2= 62+82=100
Suy ra: BC = 10 (cm)
Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)
Vậy ∆ A’B’C’ đồng dạng với ∆ ABC
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0;AC=DF;\widehat{B}=\widehat{E}\). Các tam giác vuông đó có bằng nhau không ?
Xét hai tam giác vuông ABC và DEF có:
AC = DF (gt)
\(\widehat{ABC}=\widehat{DEF}\) (gt)
Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).
Cho tam giác ABC có AB = 5, BC = 6, \(\widehat{A}=90^0+\frac{\widehat{B}}{2}\) .Tính BC.
Cho tam giác ABC, có \(\widehat{A}=90^0+\widehat{B}\), đường cao CH. CMR: a) \(\widehat{CBA}=\widehat{ACH}\)b) \(CH^2=BH.AH\)
cho tam giác ABC cân tại A (\(\widehat{A}< 90^0\)). vẽ đường tròn đường kính AB căt sBC tại D, cắt AC tại E. cmr
a.tam giác DBE cân
b.\(\widehat{CBE}=\dfrac{1}{2}\widehat{BAC}\)
Cho tam giác ABC có \(\widehat{A}=90^0\). Gọi E là một điểm nằm trong tam giác đó.
Chứng minh rằng góc BEC là góc tù ?
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
1.Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR:
a) \(_{2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}}\)
b) \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c)\(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
Cho tam giác ABC có \(\widehat{A}=90^0\), trên cạch BC lấy điểm E sao cho BE = BA . Tia phân giác của \(\widehat{B}\)cắt AC ở D
Vẽ tam giác ABC biết \(AC=2cm,\widehat{A}=90^0,\widehat{C}=60^0\) ?
Cách vẽ:
– Vẽ đoạn AC=2cm,
– Trên cùng một nửa mặt phẳng bờ AC vẽ tia Ax và Cy sao cho góc ∠CAx = 900, ∠ACy = 600
Hai tia cắt nhau ở B. tạo thành tam giác ABC cần vẽ.