Những câu hỏi liên quan
KR
Xem chi tiết
QL
Xem chi tiết
HM
19 tháng 9 2023 lúc 15:54

a) Vì G là trọng tâm tam giác ABC nên \(GM = \dfrac{1}{3}AM\)

Kẻ \(BP \bot AM\) ta có

 \(\begin{array}{l}{S_{GMP}} = \dfrac{1}{2}BP.GM\\{S_{ABM}} = \dfrac{1}{2}BP.AM\end{array}\)

\( \Rightarrow \dfrac{{{S_{GMP}}}}{{{S_{ABM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMP}} = \dfrac{1}{3}{S_{ABM}}\)(1)                         

Tương tự, kẻ \(CN \bot AM\), ta có  

\(\begin{array}{l}{S_{GMC}} = \dfrac{1}{2}CN.GM\\{S_{ACM}} = \dfrac{1}{2}CN.AM\\ \Rightarrow \dfrac{{{S_{GMC}}}}{{{S_{ACM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMC}} = \dfrac{1}{3}{S_{ACM}}\left( 2 \right)\end{array}\)

Cộng 2 vế của (1) và (2) ta có: 

\(\begin{array}{l}{S_{GMB}} + {S_{GMC}} = \dfrac{1}{3}\left( {{S_{AMC}} + {S_{ABM}}} \right)\\ \Rightarrow {S_{GBC}} = \dfrac{1}{3}{S_{ABC}}\end{array}\)

b) 

Ta có

\(\begin{array}{l}{S_{GAB}} = \dfrac{1}{2}BP.AG\\{S_{GAC}} = \dfrac{1}{2}CN.AG\end{array}\)

Xét \(\Delta BPM\) và \(\Delta CNM\) có:

\(\widehat {BPM} = \widehat {CNM} = {90^0}\)

 BM = CM ( M là trung điểm của BC)

\(\widehat {PMB} = \widehat {CMN}\)(2 góc đối đỉnh)

\( \Rightarrow \Delta BPM = \Delta CNM\)(cạnh huyền – góc nhọn)

\( \Rightarrow \) BP = CN (cạnh tương ứng)

\( \Rightarrow {S_{GAB}} = {S_{GAC}}\)

Ta có: \(AG = \dfrac{2}{3}AM\)

\(\begin{array}{l}{S_{ACB}} = {S_{GAB}} + {S_{GAC}} + {S_{GCB}}\\ \Rightarrow {S_{ACB}} = {S_{GAB}} + {S_{GAC}} + \dfrac{1}{3}{S_{ABC}}\\ \Rightarrow \dfrac{2}{3}{S_{ABC}} = 2{S_{GAC}}\\ \Rightarrow \dfrac{1}{3}{S_{ABC}} = {S_{GAC}} = {S_{GAB}}\end{array}\)

Bình luận (0)
MC
Xem chi tiết
ND
19 tháng 7 2018 lúc 13:02

A B C G M N E F d I

Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F

Gọi AI là trung tuyến của \(\Delta\)ABC

Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)

Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)

\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)

\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)

\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).

Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.

Bình luận (0)
PT
8 tháng 4 2020 lúc 17:59

1

toánlop5Nhãn
Bình luận (0)
 Khách vãng lai đã xóa
PL
16 tháng 4 2020 lúc 14:05

ai fan one piece điểm danh cái

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
MC
Xem chi tiết
HK
Xem chi tiết
SK
Xem chi tiết
NT
18 tháng 5 2022 lúc 21:44

a: Kẻ CH vuông góc với AM

\(S_{AGC}=\dfrac{CH\cdot AG}{2}\)

\(S_{GMC}=\dfrac{CH\cdot MG}{2}\)

mà AG=2MG

nên \(S_{AGC}=2S_{GMC}\)

b: Kẻ GK vuông góc với BC

\(S_{GMB}=\dfrac{BM\cdot GK}{2}\)

\(S_{GMC}=\dfrac{MC\cdot GK}{2}\)

mà BM=CM

nên \(S_{GMB}=S_{GMC}\)

Bình luận (0)
BD
Xem chi tiết