B = \(x^2+\dfrac{1}{x^2+2}\)
TÌM GTNN
PHƯƠNG PHÁP TÁCH PHẦN NGUYÊN
B= \(X^2+\dfrac{1}{X^2+2}\)
TÌM GTNN
PHƯƠNG PHÁP TÁCH PHẦN NGUYÊN
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Tách phần nguyên của biểu thức sau đây và tìm các giá trị nguyên của x để biểu thức cx có giá trị nguyên:
\(\dfrac{4x^3-6x^2+8x}{2x-1}\)
a) Tìm số tự nhiên x sao cho: 2x+2x+3=72
b)Tìm x nguyên để số hữu tỉ \(\dfrac{x-2}{x+1}\) có giá trị nguyên
c) Tìm GTNN của biểu thức: P=|2x+7|+\(\dfrac{2}{5}\)
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
1. Tìm x
a) 2(x^2+8x+16) - x^2 +4 =0
b) x^2( x-2) +7x=14
2. phân tích bàng phương pháp tách hạng tử
a) 4x^2 -3x -1
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Delta=16^2-4.1.36=112>0,\sqrt{\Delta}=\sqrt{11}\)
Vập pt có 2 nghiệm phân biệt
\(x_1=\frac{1+\sqrt{112}}{2}\);\(x_2=\frac{1-\sqrt{112}}{2}\)
b) \(x^2\left(x-2\right)+7x=14\)
\(\Leftrightarrow x^3-2x^2+7x=14\)
V: pt bậc ba ko bt giải, ms 2k7
2a) \(4x^2-3x-1\)
\(=4x^2-4x+x-1\)
\(=4x\left(x-1\right)+\left(x-1\right)=\left(4x+1\right)\left(x-1\right)\)
Câu 1
a) 2(x2+8x+16)-x2+4=0 b) x2(x-2)+7x=14
2x2+16x +32 -x2+4=0 x2(x-2)+7x-14=0
x2+16x+36=0 x2(x-2)+7(x-2)=0
x2+2x+18x+36=0 (x2+7)(x-2)=0
(x+2)(x+18)=0 x2+7=0 hoặcx-2 =0
x+2=0 hoặc x+18=0 x2= -7(vô lý) hoặc x=2
x= -2 hoặc x= -18
Phân tích các tử thức và các mẫu thức (nếu cần thì dùng phương pháp thêm và bớt cùng một số hạng hoặc tách một số hạng thành hai số hạng ) rồi rút gọn biểu thức :
a) \(\dfrac{x-2}{x+1}.\dfrac{x^2-2x-3}{x^2-5x+6}\)
b) \(\dfrac{x+1}{x^2-2x-8}.\dfrac{4-x}{x^2+x}\)
c) \(\dfrac{x+2}{4x+24}.\dfrac{x^2-36}{x^2+x-2}\)
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
*Rút gọn
Ta có: \(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Ta có: \(C=x-\sqrt{x}+1\)
\(=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\)
hay \(x=\dfrac{1}{4}\)
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0;x\ne1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(C_{min}=\dfrac{3}{4}\)
\(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\)
Áp dụng AM-GM có: \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\)
Dấu "=" xảy ra khi x=1 (ktm đk)
Suy ra dấu bằng ko xảy ra \(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2-1=1\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}< 2\)
\(\Rightarrow N< 2\) mà \(N>0\),\(N\) nguyên
\(\Rightarrow N=1\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{5}}{2}\\\sqrt{x}=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\) (tm)
Vậy...
\(\Rightarrow C=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\) * \(\Rightarrow C=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
* Ta có \(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}>0\left(1\right)\)
Xét \(N-2=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}< 0\left(dox\ne1\right)\Rightarrow N< 2\left(2\right)\) Từ (1) và (2) \(\Rightarrow0< N< 2\). Mà N nguyên nên N=1 \(\Rightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\Rightarrow2\sqrt{x}=x-\sqrt{x}+1\Leftrightarrow x-3\sqrt{x}+1=0\)
\(\Delta=9-4=5\Rightarrow\) pt có 2 nghiệm phân biệt: \(x_1=\dfrac{\sqrt{5}+3}{2}\left(TM\right);x_2=\dfrac{3-\sqrt{5}}{2}\left(TM\right)\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).