Những câu hỏi liên quan
ND
Xem chi tiết
GD

Biểu thức nào em?

Bình luận (1)
PT
Xem chi tiết
LP
6 tháng 7 2023 lúc 20:28

 Bài này chỉ tìm được GTLN thôi nhé bạn.

 Ta thấy \(A=-\dfrac{1}{3}x^2+2x\) 

\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)

\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)

\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)

 Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).

Bình luận (0)
MC
Xem chi tiết
NL
5 tháng 4 2021 lúc 21:04

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

Bình luận (1)
FJ
Xem chi tiết
NL
22 tháng 4 2021 lúc 16:12

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)

Bình luận (0)
HT
Xem chi tiết
NM
23 tháng 11 2021 lúc 15:59

\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)

Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)

Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (0)
DN
Xem chi tiết
NT
25 tháng 3 2023 lúc 22:27

a: \(M=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

b: x thuộc {0;0,5}

=>x=0 hoặc x=0,5

Khi x=0 thì M=1/0+1=1

Khi x=0,5 thì M=1/0,5+1=1/1,5=2/3

=>M min=2/3 và M max=1

Bình luận (0)
NH
Xem chi tiết
HT
Xem chi tiết
MY
20 tháng 10 2021 lúc 19:18

\(đk:x^2+2x+2\ne0\Leftrightarrow x^2+2x+1+1=\left(x+1\right)^2+1\ne0\left(luôn-đúng\right)\)

\(A=\dfrac{x^2+10x+16}{x^2+2x+2}\Leftrightarrow A\left(x^2+2x+2\right)=x^2+10x+16\)

\(\Leftrightarrow Ax^2+2Ax+2A-x^2-10x-16=0\)

\(\Leftrightarrow x^2\left(A-1\right)+x\left(2A-10\right)+2A-16=0\)

\(\Rightarrow\Delta\ge0\Leftrightarrow\left(2A-10\right)^2-4\left(A-1\right)\left(2A-16\right)\ge0\)

\(\Leftrightarrow4A^2-40A+100-4\left(2A^2-18A+16\right)\ge0\)

\(\Leftrightarrow-4A^2+32A+36\ge0\Rightarrow-1\le A\le9\Rightarrow\left\{{}\begin{matrix}MinA=-1\\MaxA=9\end{matrix}\right.\)

\(tại\) \(MinA=-1\) \(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=-3\)

\(tại\) \(MaxA=9\) \(dấu"='\) \(xảy\) \(ra\Leftrightarrow x=-0,5\)

Bình luận (2)
PL
Xem chi tiết
AH
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Bình luận (0)
8N
Xem chi tiết
NT
13 tháng 1 2024 lúc 22:28

Câu 2:

ĐKXĐ: x<>0

\(B=\dfrac{-x^2-x-1}{x^2}\)

\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)

\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)

\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)

Dấu '=' xảy ra khi 1/x+1/2=0

=>1/x=-1/2

=>x=-2

Bình luận (0)