Những câu hỏi liên quan
H24
Xem chi tiết
NT
23 tháng 12 2023 lúc 21:02

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD

Bình luận (0)
NT
Xem chi tiết
NT
11 tháng 5 2023 lúc 8:16

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

Bình luận (0)
DH
Xem chi tiết
NT
12 tháng 5 2023 lúc 3:00

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

Bình luận (0)
DH
Xem chi tiết
NT
12 tháng 5 2023 lúc 3:01

loading...

 

Bình luận (0)
SO
Xem chi tiết
NT
27 tháng 10 2021 lúc 20:31

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

Bình luận (3)
CD
Xem chi tiết
H24
Xem chi tiết
NT
9 tháng 5 2023 lúc 12:51

ΔABH vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔACH vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>ΔAMN đồng dạng với ΔACB

Bình luận (0)
KL
9 tháng 5 2023 lúc 13:07

loading...  

Xét hai tam giác vuông: ∆AHB và ∆AMH có:

∠A chung

⇒ ∆AHB ∽ ∆AMH (g-g)

⇒ AH/AM = AB/AH

⇒ AH² = AB.AM   (1)

Xét hai tam giác vuông: ∆AHC và ∆ANH có:

∠A chung

⇒ ∆AHC ∽ ∆ANH (g-g)

⇒ AH/AN = AC/AH

⇒ AH² = AC.AN   (2)

Từ (1) và (2) ⇒ AB.AM = AN.AC

⇒ AM/AC = AN/AB

Xét ∆AMN và ∆ACB có:

∠MAN = ∠ACB = 90⁰

AM/AC = AN/AB (cmt)

⇒ ∆AMN ∽ ∠∆ACB (c-g-c)

Bình luận (0)
ZT
Xem chi tiết
NT
25 tháng 4 2023 lúc 9:23

 

loading...

Bình luận (0)
SO
Xem chi tiết
NT
27 tháng 10 2021 lúc 21:37

a: AC=16(cm)

AM=10(cm)

Bình luận (1)