cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh SBNDM=1/2 SABCD
Cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh SBNDM=1/2SABCD.
Nối BD, gọi diện tích các tam giác (theo hình vẽ) là S1,S2,S3,S4.S1,S2,S3,S4. Ta có BN là trung tuyến của ΔBCDΔBCD nên S1=S2S1=S2 (chung đường cao, đáy bằng nhau)
Tương tự S3=S4S3=S4
⇒S2+S3=S1+S4=12SABCD⇒S2+S3=S1+S4=12SABCD
Hay SBNDM=1/2SABCD.SBNDM=1/2SABCD.
cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh SBNDM=1/2 SABCD
Cho hình chữ nhật ABCD ( AB AD > ), gọi M là trung điểm cạnh AB . Từ M kẻ MN ^ CD tại N . 1) Chứng minh tứ giác AMND là hình chữ nhật. 2) Gọi K là điểm đối xứng của D qua M . a) Tứ giác AKBD là hình gì? Giải thích? b) Chứng minh B là trung điểm của đoạn thẳng KC
1: Xét tứ giác AMND có
\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Trả lời:
1: Xét tứ giác AMND có
ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Chúc bạn học tốt nhé.
Cho hình chữnhật ABCD (AB>AD). Gọi M là trung điểm của AB, N làtrung điểm của CD. AC và BD cắt nhau ở K.
a) Tứ giác AMCN là hình gì? Vì sao?
b) Gọi O là trung điểm của MD. Chứng minh rằng A, O, N thẳng hàng
c) Gọi I là trung điểm của MC. Chứng minh rằng: O và I đối xứng với nhau qua MN.
a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)
Mà ABCD là hcn nên AB//CD hay AM//CN
Vậy AMCN là hbh
b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn
Mà O là trung điểm MD nên O là trung điểm AN
Vậy A,O,N thẳng hàng
c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn
Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I
Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN
Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN
Vậy OI là trung trực MN hay O đx I qua MN
a) Cho tam giác đều ABC. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CA, AB. Chứng minh MNP là tam giác đều
b) Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)
c) Cho ngũ giác đều ABCD. Gọi M, N, P, Q, R tương ứng là trung điểm của các cạnh BC, CD, EA, AB. Chứng minh MNPQR là ngũ giác đều
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.
Cho tứ giác lồi ABCD, M, N lần lượt là trung điểm của AB, CD. H là hình chiếu
của M trên CD, K là hình chiếu của N trên AB. CMR SABCD = 1/2
( MH.CD + NK.AB) .
cho tứ giác abcd. gọi m, n lần lượt là trung điểm của các cạnh ab, cd. biết . chứng minh rằng nếu MN=1/2(AB+CD) thì ABCD là hình thang.
Thanks.
cho tứ giác abcd. gọi m, n, p, q lần lượt là trung điểm của các cạnh ab, bc, cd, da và i, k là trung điểm các đường chéo ac, bd. chứng minh rằng:
a) tứ giác mnpq, inkq là hình bình hành.
b) gọi o là giao điểm của mp, nq. chứng minh 3 điểm i, o, k thẳng hàng
các bạn giúp mình với ạ, mình cảm ơn rất nhiều!
a) Ta có:-
- M là trung điểm của AB
⇒ AM = MB.
- N là trung điểm của BC
⇒ BN = NC.
- P là trung điểm của CD
⇒ CP = PD.
- Q là trung điểm của DA
⇒ DQ = QA.
Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.
⇒ tứ giác MNPQ là hình bình hành.
Có:
- I là trung điểm của AC
⇒AI = IC.
- K là trung điểm của BD
⇒ BK = KD.
Do đó, ta có: AI = IC = BK = KD.
⇒ tứ giác INKQ là hình bình hành.
b)Gọi O là giao điểm của MP và NQ ta có:
MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).
⇒ MP song song với NQ.
do đó :O nằm trên MP và NQ.
Gọi H là giao điểm của MI và NK ta có:
MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD).
⇒ MI song song với NK.
Do đó: H nằm trên cả MI và NK.
Gọi G là giao điểm của OH và BD ta có:
OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên MI và NK).
⇒ OH song song với BD.
doo đó: G nằm trên OH và BD.
⇒ I, O, K thẳng hàng.(ĐPCM)
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ/AC=DQ/DA=1/2
=>PQ=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔCAB có CI/CA=CN/CB=1/2
nên IN//AB và IN=1/2AB
Xét ΔDAB có DQ/DA=DK/DB=1/2
nên QK//AB và QK=1/2AB
=>IN//QK và IN=QK
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm của NQ
INKQ là hbh
=>IK cắt NQ tại trung điểm của mỗi đường
=>I,O,K thẳng hàng
cho tứ giác ABCD gọi E và F là trung điểm của các cạnh AB và CD Gọi M,N,P,Q lần lượt là trung điểm của các đoạn AF,CE,BF,DE. Chứng minh tứ giác MNPQ là hình bình hành
Cho hình bình hành ABCD. Lấy M là trung điểm của AB, N là trung điểm của CD. Gọi I là giao điểm của AN và DM, K là giao điểm của BN và CM.
a) Chứng minh: MD // BN.
b) Chứng minh tứ giác INKM là hình bình hành.
c) Gọi O là giao điểm của AC và BD. Chứng minh rằng I, O, K thẳng hàng.
a: Xét tứ giác BMDN có
BM//ND
BM=ND
Do đó: BMDN là hình bình hành
Suy ra: MD//BN