Những câu hỏi liên quan
NT
Xem chi tiết
NT
15 tháng 5 2021 lúc 14:06

b) Ta có: \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(9x^2-1=0\)

\(\Leftrightarrow9x^2=1\)

\(\Leftrightarrow x^2=\dfrac{1}{9}\)

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Bình luận (0)
HM
Xem chi tiết
LL
27 tháng 8 2021 lúc 13:56

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

Bình luận (1)
NT
27 tháng 8 2021 lúc 14:02

a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)

b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)

\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)

\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)

\(=\left(5y-3x\right)\left(5y+3x\right)\)

\(=25y^2-9x^2\)

d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)

\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)

\(=\dfrac{9}{4}y^2-x^2\)

e: \(\left(a+b+c\right)\left(a+b-c\right)\)

\(=\left(a+b\right)^2-c^2\)

\(=a^2+2ab+b^2-c^2\)

Bình luận (0)
HN
Xem chi tiết
TM
13 tháng 7 2019 lúc 21:34

3, 2x(x^2-8x+16)-(x+5)(x^2-4)+2(x^2+10x+25)-x+1

=2x^3-16x^2+32x-(x^3-4x+5x^2-20)+2x^2+20x+50-x+1

=2x^3-16x^2+32x-x^3+4x-5x^2+20+2x^2+20x+50-x+1

=x^3-19x^2+55x+71

Bình luận (0)
VL
Xem chi tiết
TN
18 tháng 9 2017 lúc 17:05

Chị tui bày tui biết rùi nhưng ko bày đâu

Bình luận (0)
TP
Xem chi tiết
NL
Xem chi tiết
H24
20 tháng 10 2021 lúc 18:56

\(\left(5x-1\right)\left(x+2\right)-3\left(x+2\right)^2-2\left(x-3\right)\left(x+2\right)\)

\(=\left(x+2\right)\left(5x-1-2x+6\right)-3\left(x^2+4x+4\right)\)

\(=\left(x+2\right)\left(3x+5\right)-3x^2-12x-12=-x-2\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
LL
26 tháng 10 2021 lúc 19:15

a) \(=2x\left(x-25\right)\)

b) \(=x\left(x-4\right)-\left(x-4\right)=\left(x-4\right)\left(x-1\right)\)

c) \(=x^2-\left(y^2-12y+36\right)=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)

d) \(=y\left(x^2+4xz+4yz\right)\)

Bình luận (0)
MH
26 tháng 10 2021 lúc 19:21

a) \(2x^2-50x\)

\(=2x\left(x-25\right)\)

b) \(x^2-5x+4\)

\(=\left(x-1\right)\left(x-4\right)\)

c) \(x^2-y^2+12y+36\)

\(=\left(x+y-6\right)\left(x-y+6\right)\)

d) \(x^2z+4xyz+4y^2z\)

\(=z\left(x^2+4xy+4y^2\right)\)

\(=z\left(x+2y\right)^2\)

Bình luận (0)
HN
Xem chi tiết
NM
8 tháng 9 2021 lúc 19:08

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

Bình luận (0)
MH
8 tháng 9 2021 lúc 19:09

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

Bình luận (0)
NM
8 tháng 9 2021 lúc 19:12

\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương

Bình luận (0)
NB
Xem chi tiết
H9
6 tháng 12 2023 lúc 7:22

\(5x^2+2y^2+6xy-8x-4y+4=0\)

\(\Leftrightarrow4x^2+x^2+y^2+y^2+2xy+4xy-8x-4y+4=0\)

\(\Leftrightarrow\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left[\left(2x\right)^2+4xy+y^2-4\left(2x+y\right)+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left[\left(2x+y\right)^2-2\cdot\left(2x+y\right)\cdot2+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\forall x,y\\\left(x+y\right)^2\ge0\forall x,y\end{matrix}\right.\)  

\(\Rightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2\ge0\forall x,y\)

Mặt khác: \(\left(2x+y-2\right)^2+\left(x+y\right)^2=0\) 

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2x+y-2=0\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(-y\right)+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=2\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\) 

Thay x,y vào P ta có:

\(P=2^{2023}+\left(-2\right)^{2023}=2^{2023}-2^{2023}=0\)

Vậy: ... 

Bình luận (0)