Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

HN

1) Tìm x, y, z

a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0

b) 5x2 +5y2 +8xy+2y – 2x+2 = 0

c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0

d) x2 + 4y2 + z2 =2x + 12y – 4z – 14

e) x2 +y2 – 6x + 4y +2= 0

Giúp mik vs cần gấp!!! 

NM
8 tháng 9 2021 lúc 19:08

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

Bình luận (0)
MH
8 tháng 9 2021 lúc 19:09

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

Bình luận (0)
NM
8 tháng 9 2021 lúc 19:12

\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TT
Xem chi tiết
DH
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
DH
Xem chi tiết