Tìm GTLN của biểu thức :
5+6x-x2
Tìm GTLN của các biểu thức sau:
A = 6x - 3x2 - 7
B = 5x - 2x2 + 1
C = 2x2 - 8x + 13
D = x2 - 3x + 5
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
tìm GTLN của biểu thức
B= 6x-x^2-5
\(B=6x-x^2-5=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2.3x+9-4\right)\)
\(=-\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\le4\)
Vậy \(B_{min}=4\Leftrightarrow x=3\)
\(B=6x-x^2-5=-\left(x^2-6x+5\right)=-\left(x^2-2x3+3^2-4\right)\)
\(=-\left(x-3\right)^2+4\le4\forall x\)
\(B\text{ đạt GTLN bằng 4 khi }x-3=0\)
\(\Leftrightarrow x=3\)
\(\text{Vậy B đạt GTLN bằng 4 khi }x=3\)
Bài làm
B = 6x - x2 - 5
= - ( x2 - 6x + 5 )
= - ( x2 - 6x + 9 - 4 )
= - ( x - 3 )2 + 4 < 4
Dấu " = " xảy ra <=> ( x - 3 )2 = 0
=> x = 3
Vậy giá trị nhỏ nhất của B = 4 khi x = 3
# Học tốt #
\(E=-3x^2-6x+5\)
\(=-3\left(x^2+2x-\frac{5}{3}\right)\)
\(=-3\left(x^2+2x+1\right)+8\)
\(=-3\left(x+1\right)^2+8\le8\forall x\)
Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)
\(=-3\left(x+1\right)^2+8\le8\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN của E bằng 8 tại x = -1
Tìm GTLN của biểu thức :
6x-x2-5
Bài làm:
Ta có: \(6x-x^2-5\)
\(=-\left(x^2-6x+9\right)+4\)
\(=-\left(x-3\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy \(Max=4\Leftrightarrow x=3\)
\(6x-x^2-5=-\left(x-3\right)^2+4\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-3\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy GTLN của bt trên = 4 <=> x = 3
6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy GTLN của biểu thức = 4 <=> x = 3
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
tìm GTNN của biểu thức :
B=2x2 40x-15
C=x2-4xy+5y2-4y+28
Tìm GTLN của biểu thức :
D= - x2+4x+3
E=x-x2
F=\(\dfrac{5}{x^{2+2x+5}}\)
Mọi người ơi, giúp mình bài này với, cảm ơn mọi người nhiều nha !!!
tìm gtln của biểu thức √x-1 + √16-6x +√6x-3
tìm gtln của biểu thức: E= -x^4-10x^2-6x^3-6x+15
\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)
\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)
\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)
\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)
\(E_{max}=24\) khi \(x=-3\)
Tìm GTLN của biểu thức :
\(A=x^4-6x^3+9x^2+6x+2021\)