Tìm các số a,b,c,d biết \(178\cdot\left(abcd+ab+ad+cd+1\right)=235\cdot\left(bcd+b+d\right)\)
Với \(n\) là số lẻ thì: \(a^n-b^n=\left(a-b\right)\cdot A\)
\(a^n+b^n=\left(a+b\right)\cdot B\)
Với \(n\) là số chẳn thì: \(a^n-b^n=\left(a-b\right)\cdot C=\left(a+b\right)\cdot D\)
Tìm các biểu thức \(A,B,C,D\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)CM
a)\(\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
b)\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
c)\(\left(a+2c\right)\cdot\left(b+d\right)=\left(a+c\right)\cdot\left(b+2d\right)\)
giúp mk vs
Phân tích đa thức sau thành nhân tử:
a) \(8\cdot\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z-x\right)^3\)
b) \(\left[4abcd+\left(a^2+b^2\right)\cdot\left(c^2+d^2\right)\right]^2-4\cdot\left[cd\cdot\left(a^2+b^2\right)+ab\cdot\left(c^2+d^2\right)\right]^2\)
Các bạn giúp mk giải bài tập này nhá.mk cảm ơn nhìu
Cho a,b,c,d thoả mãn:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{d+a+b}{c}\)
Tìm: \(B=\left(1+\frac{a+b}{c+d}\right)\cdot\left(1+\frac{b+c}{d+d}\right)\cdot\left(1+\frac{c+d}{a+b}\right)\cdot\left(1+\frac{d+a}{b+c}\right)\)
Chứng minh rằng nếu có
\(\left(a+b+c+d\right)\cdot\left(a-b-c+d\right)=\left(a-b+c-d\right)\cdot\left(a+b-c-d\right)\)
thì 4 số a, b, c,d lập thành 1 tỉ lệ thức
NGHE NÓI CÁC BẠN TRÊN OLM RẤT THÍCH BĐT , MÀ MÌNH CÓ MỘT BÀI MONG CÁC BẠN CHO MÌNH MỘT SỐ CÁCH TỐI ƯU HƠN :
CHO A , B , C >= 0
C/M RẰNG \(\left(A+B+C\right)\cdot\left(AB+BC+CA\right)\le\frac{9}{8}\cdot\left(A+B\right)\cdot\left(B+C\right)\cdot\left(C+A\right)\)
Hi :D
Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào
Câu 1:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)
Câu 2:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)
Câu 3:
Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:
\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)
Câu 4:
Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:
\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)
Câu 5:
Với a,b,c là các số thực không âm.Chứng minh rằng:
\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)
Continue...
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
chứng minh
a. \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
b. \(\dfrac{a\cdot b}{c\cdot d}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c.\(\dfrac{2008\cdot a-2009\cdot b}{2009\cdot c+2010\cdot d}=\dfrac{2008\cdot c-2009\cdot d}{2009\cdot a+2010\cdot b}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Cho a, b, c là các số dương thỏa mãn a + b + c = 1. Tìm Min:
\(A=\dfrac{\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)}{\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)}\)