Bài 1: Tìm x, y biết :
\(a,\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}vàx+y+z=138\)
\(b,7x=5yvàxy=140\)
\(c,3x=8y=6zvà2x+3y-z=210\)
\(d,\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}và2x+3y-z=50\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |
Tìm x,y ∈ \(Z\) , biết :
a) \(\dfrac{x}{5}+1=\dfrac{x}{y-1}\)
b) \(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
c) \(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
b:
ĐKXĐ: x<>0
\(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(6+xy\right)=3x\)
=>\(x=2\left(6+xy\right)=12+2xy\)
=>\(x\left(1-2y\right)=12\)
mà x,y là các số nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)
c: ĐKXĐ: y<>-1
\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)
=>\(2xy+2x+6=y+1\)
=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)
=>\(\left(2x-1\right)\left(y+1\right)=-6\)
mà x,y là các số nguyên
nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
@Nguyễn Đức Trí: Đề bài nó như vậy mà
bài 3: Tìm y
a) \(\dfrac{1}{2}\) : y x \(\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\) b) \(\dfrac{4}{3}-\dfrac{1}{2}\) x y \(=1\) c) \(\dfrac{1}{4}+y\) : \(\dfrac{1}{3}=\dfrac{5}{6}\)
a) \(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\)
\(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{25}{12}\)
\(\dfrac{1}{2}:y=\dfrac{25}{12}:\dfrac{3}{5}\)
\(\dfrac{1}{2}:y=\dfrac{125}{36}\)
\(y=\dfrac{1}{2}:\dfrac{125}{36}\)
\(y=\dfrac{18}{125}\)
b) \(\dfrac{4}{3}-\dfrac{1}{2}\times y=1\)
\(\dfrac{1}{2}\times y=\dfrac{4}{3}-1\)
\(\dfrac{1}{2}\times y=\dfrac{1}{3}\)
\(y=\dfrac{1}{3}:\dfrac{1}{2}\)
\(y=\dfrac{2}{3}\)
c) \(\dfrac{1}{4}+y:\dfrac{1}{3}=\dfrac{5}{6}\)
\(y:\dfrac{1}{3}=\dfrac{5}{6}-\dfrac{1}{4}\)
\(y:\dfrac{1}{3}=\dfrac{7}{12}\)
\(y=\dfrac{7}{12}\cdot\dfrac{1}{3}\)
\(y=\dfrac{7}{36}\)
bài 1
a> Tính giá tị của biểu thức A=\(x^2-3x+1\) khi \(\left|x+\dfrac{1}{3}\right|=\dfrac{2}{3}\)
b> Tìm x biết: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
Bài 2
a> Tìm các số x,y thỏa mãn: \(\dfrac{x-1}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
b> Cho x nguyên, tìm giá trị lớn nhất của biểu thức sau: A=\(\dfrac{2x+1}{x-3}\)
c> Tìm số có 2 chữ số \(\overline{ab}\) biết: \(\left(\overline{ab}\right)^2\)=\(\left(a+b\right)^3\)
\(\overline{ab}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
bài 1 : Tìm y
\(\dfrac{7}{8}xy-\dfrac{6}{4}=\dfrac{3}{2}\) \(\dfrac{2}{5}:y+\dfrac{1}{5}:y=\dfrac{10}{3}\)
bài 2 : Tính nhanh
\(\dfrac{2}{5}x\dfrac{4}{7}+\dfrac{2}{5}x\dfrac{3}{7}\) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
Bài 2:
+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)
+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)
Tìm số nguyên x, y biết:
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\) b, \(\dfrac{6}{x-1}=\)\(\dfrac{-3}{7}\) c, \(\dfrac{y-3}{12}\)=\(\dfrac{3}{y-3}\) d, \(\dfrac{x}{25}\)=\(\dfrac{-5}{x^2}\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
Bài tập 2: Cho biết a + b = 6, a – b =4, a.b = 5. Không cần tìm ra a, b hãy tính các giá trị của các biểu thức sau:
a) A= x2+y2
b) B= x3+y3+xy
c) C= x2-y2
d) D= \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
e) E= \(\dfrac{x}{y}\)+\(\dfrac{y}{x}\)
chắc đề cho x,y chứ x+y=6,x-y=4,xy=5
(làm ra bạn tự thay số vào tính)
a,\(=>A=\left(x+y\right)^2-2xy=.....\)
b,\(=>B=\left(x+y\right)^3-3xy\left(x+y\right)+xy=....\)
c,\(=>C=\left(x-y\right)\left(x+y\right)=....\)
d,\(=>D=\dfrac{x+y}{xy}=.....\)
e,\(=>E=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=...\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=6^2-2\cdot5=26\)
b: \(B=x^3+y^3+xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)
\(=6^3-3\cdot5\cdot6+5\)
\(=216-90+5=131\)
c: \(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=4\cdot6=24\)
d: \(D=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{6}{5}\)
e: \(E=\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{x^2+y^2}{xy}=\dfrac{\left(x+y\right)^2-2xy}{xy}=\dfrac{6^2-2\cdot5}{5}=\dfrac{26}{5}\)
bài 3: Tính
a) \(\dfrac{4}{5}x\dfrac{5}{8}:\dfrac{4}{5}\)
b) \(\dfrac{5}{6}+\left(\dfrac{1}{2}:\dfrac{3}{2}+\dfrac{4}{5}\right)\)
bài 4 Tìm y
\(\dfrac{3}{4}+y:\dfrac{2}{5}=\dfrac{37}{16}\) 456 + y : 87 = 23987
Bài 4:
\(\dfrac{3}{4}+y:\dfrac{2}{5}=\dfrac{37}{16}\)
\(\Rightarrow y:\dfrac{2}{5}=\dfrac{37}{16}-\dfrac{3}{4}\)
\(\Rightarrow y:\dfrac{2}{5}=\dfrac{25}{16}\)
\(\Rightarrow y=\dfrac{2}{5}\cdot\dfrac{25}{16}\)
\(\Rightarrow y=\dfrac{5}{8}\)
________________
\(456+y:87=23987\)
\(\Rightarrow y:87=23987-456\)
\(\Rightarrow y:87=23531\)
\(\Rightarrow y=23531\cdot87\)
\(\Rightarrow y=2047197\)
a)\(\dfrac{4}{5}\times\dfrac{5}{8}:\dfrac{4}{5}\)
\(=\left(\dfrac{4}{5}:\dfrac{4}{5}\right)\times\dfrac{5}{8}\)
\(=1\times\dfrac{5}{8}=\dfrac{5}{8}\)
b)\(\dfrac{5}{6}+\left(\dfrac{1}{2}:\dfrac{3}{2}+\dfrac{4}{5}\right)\)
\(=\dfrac{5}{6}+\left(\dfrac{1}{3}+\dfrac{4}{5}\right)\)
\(=\dfrac{5}{6}+\dfrac{17}{15}\)
\(=\dfrac{59}{30}\)
Bài 2:
a) \(\dfrac{3}{4}+y:\dfrac{2}{5}=\dfrac{37}{16}\)
\(y:\dfrac{2}{5}=\dfrac{37}{16}-\dfrac{3}{4}\)
\(y:\dfrac{2}{5}=\dfrac{25}{16}\)
\(y=\dfrac{25}{16}\times\dfrac{2}{5}\)
\(y=\dfrac{5}{8}\)
b)\(456+y:87=23987\)
\(y:87=23987-456\)
\(y:87=23531\)
\(y=23531\times87\)
\(y=2047197\)
a) 4/5 x 5/8 : 4/5
= 5/8
b) 5/6 + ( 1/2 : 3/2 + 4/5)
= 5/6 + (1/3 + 4/5)
= 5/6 + 17/15
= 59/30
B4:
3/4 + y : 2/5 = 37/16
y : 2/5 = 25/16
y = 5/8.
456 + y : 87 = 23987
y : 87 = 23531
y = 2047197.
Câu 1 : Biết\(\dfrac{x}{t}=\dfrac{5}{6};\dfrac{y}{z}=\dfrac{1}{5};\dfrac{z}{x}=\dfrac{7}{3}\) ( x; y; z; t khác 0 ). Hãy tìm tỉ số \(\dfrac{t}{y}\)
A. \(\dfrac{t}{y}=\dfrac{14}{25}\) B. \(\dfrac{t}{y}=\dfrac{7}{8}\) C. \(\dfrac{t}{y}=\dfrac{18}{7}\) D. \(\dfrac{t}{y}=\dfrac{6}{7}\)