Những câu hỏi liên quan
LN
Xem chi tiết
PT
Xem chi tiết
NT
5 tháng 11 2023 lúc 20:04

ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>O là trung điểm chung của AC và BD

ABCD là hình chữ nhật

=>AB=CD=2a; BC=AD

O là trung điểm của AC

=>\(AC=2\cdot AO=2a\cdot\sqrt{5}\)

=>\(BD=2a\sqrt{5}\)

ABCD là hình chữ nhật

=>ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=AC^2-AB^2=\left(2a\sqrt{5}\right)^2-\left(2a\right)^2=20a^2-4a^2=16a^2\)

=>BC=4a

=>\(\left|\overrightarrow{BC}\right|=4a\)

Bình luận (0)
DN
Xem chi tiết
DA
Xem chi tiết
NS
Xem chi tiết
NL
1 tháng 11 2021 lúc 20:11

\(\widehat{ABC}=120^0\Rightarrow\widehat{DAB}=180^0-120^0=60^0\)

\(\Rightarrow\Delta ABD\) đều

Gọi E là trung điểm AD \(\Rightarrow\overrightarrow{BE}=\dfrac{1}{2}\overrightarrow{BD}+\dfrac{1}{2}\overrightarrow{BA}\)

\(\Rightarrow\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BE}=\dfrac{1}{3}\overrightarrow{BD}+\dfrac{1}{3}\overrightarrow{BA}\)

\(\Rightarrow\overrightarrow{BG}+\overrightarrow{AD}=\dfrac{1}{3}\overrightarrow{BD}+\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{AD}=\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)+\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{AD}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{4}{3}\overrightarrow{AD}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{3}\overrightarrow{AD}\)

Đặt \(\overrightarrow{u}=\overrightarrow{BG}+\overrightarrow{AD}\Rightarrow\left|\overrightarrow{u}\right|^2=\left(-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{3}\overrightarrow{AD}\right)=\dfrac{4}{9}AB^2+\dfrac{16}{9}AD^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AD}\)

\(=\dfrac{4}{9}.4a^2+\dfrac{16}{9}4a^2-\dfrac{16}{9}.2a.2a.cos60^0=\dfrac{16}{3}a^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\dfrac{4a\sqrt{3}}{3}\)

Bình luận (0)
NL
1 tháng 11 2021 lúc 20:11

undefined

Bình luận (0)
LN
Xem chi tiết
NT
29 tháng 10 2021 lúc 23:46

\(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=BD=a\sqrt{6}\)

Bình luận (0)
HV
Xem chi tiết
LV
Xem chi tiết
LC
2 tháng 1 2020 lúc 9:21

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết