tìm x
a) ( x - 1)^3 + 3(x+1)^2 = (x^2 - 2x + 4 )( x+ 2)
b) ( 2x -1 )(x+3) - x(3+2x) = 26
tìm x 4.(x+1).(-x+2)+(2x-1).(2x+3)=-11 (2x+4).(3x+1).(x-2)-(-3x2 +1).(-2x+2/3)=-26/3
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
Tìm x, biết :
a, ( x +2 ) ( x^2 - 2x + 4 ) - x( x + 3 ) ( x - 3) = 26
b, ( x - 3 ) ( x^2 + 3x + 9 ) - x( x - 4 ) ( x + 4 ) = 21
c, ( 2x -1 ) ( 4x^2 + 2x + 1 ) - 4x(2x^2 - 3 ) = 23
a/\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
↔ \(x^3+2^3\)\(-x\left(x^2-3^2\right)\)= 26
↔\(x^3+8-x^3+9x=26\)
↔\(9x=18\leftrightarrow x=2\)
Vậy x=2
b/\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)
\(\Leftrightarrow x^3-3^3-x\left(x^2-4^2\right)=21\)
\(\Leftrightarrow x^3-9-x^3+16x=21\)
\(\Leftrightarrow16x=30\)
\(\Leftrightarrow x=\frac{15}{8}\)
Vậy \(x=\frac{15}{8}\)
c/\(\left(2x-1\right)\left(4x^2+2x+1\right)-4x\left(2x^2-3\right)=23\)
↔\(\left(2x\right)^3-1^3-4x\left(2x^2-3\right)=23\)
↔\(8x^3-1-8x^3+12x=23\)
↔\(12x=24\leftrightarrow x=2\)
Vậy x=2
a, (x + 2)(x2 - 2x + 4 ) - x(x + 3)(x - 3) = 26
<=> x3 + 8 - x(x2 - 9) = 26
<=> x3 + 8 - x3 + 9x = 26
<=> 9x - 18 = 0
<=> 9x = 18
<=> x = 2
b, (x - 3)(x2 + 3x + 9) - x(x - 4)(x + 4) = 21
<=> x3 - 27 - x(x2 - 16) = 21
<=> x3 - 27 - x3 + 16x = 21
<=> 16x - 48 = 0
<=> 16x = 48
<=> x = 3
c, (2x - 1)(4x2 + 2x + 1) - 4x(2x2 - 3) = 23
<=> 8x3 - 1 - 8x3 + 12x = 23
<=> 12x - 24 = 0
<=> 12x = 24
<=> x = 2
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
\(< =>x^3-2x^2+4x+2x^2-4x+8-x\left(x^2-9\right)-26=0\)
\(< =>x^3+8-x^3+9x-26=0\)
\(< =>9x-18=0< =>x=2\)
1, Tìm x hoặc y biết:
a) 2x (x-5)-x(2x+3)=26
b) (3y^2-y+1)(y-1)+y^2(4-3y)=5/2
c) 2x^2+3(x-1)(x+1)=5x(x+1)
Tìm x: a) 2x(x-3)-x(3+2x)=26
b) (x+4)2-(x+1)(x-1)=16
c) (2x-1)2-4(x+7)(x-7)=0
d) x(x-5)-4x+20=0
mk làm lun nha
a, 2x^2-6x-3x-2x^2=26
-9x=26
x=-26/9
b,x^2+2.x.4+16-(x^2-1)=16
x^2+8x+16-x^2+1=16
8x=-1
x=-1/8
c,(2x)^2-2.2x.1+1-4(x^2-7^2)=0
4x^2-4x+1-4x^2+196=0
-4x=-197
x=197/4
d,x^2-5x-4x+20=0
-9x=-20
x=20/9
**** cho mk nha
Bài 1: Tìm x
a) (2x-1)^2 +1=26
b)(2x-4)^3+2=66
c)7^x+2 +5.7^x+1+15=603
`@` `\text {Ans}`
`\downarrow`
`a)`
`(2x - 1)^2 + 1 = 26`
`\Rightarrow (2x - 1)^2 = 26 - 1`
`\Rightarrow (2x - 1)^2 = 25`
`\Rightarrow (2x - 1)^2 = (+-5)^2`
`\Rightarrow`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=6\div2\\x=-4\div2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-2;3\right\}\)
`b)`
`(2x - 4)^3 + 2 = 66`
`\Rightarrow (2x - 4)^3 = 66 - 2`
`\Rightarrow (2x - 4)^3 = 64`
`\Rightarrow (2x - 4)^3 = 4^3`
`\Rightarrow 2x - 4 = 4`
`\Rightarrow 2x = 8`
`\Rightarrow x = 8 \div 2`
`\Rightarrow x = 3`
Vậy, `x = 3`
`c)`
\(7^{x+2}+5\cdot7^{x+1}+15=603\)
`\Rightarrow 7^x . 7^2 + 5 . 7^x . 7 = 603 - 15`
`\Rightarrow 7^x . 7^2 + 35 . 7^x = 588`
`\Rightarrow 7^x . (7^2 + 35) = 588`
`\Rightarrow 7^x . 84 = 588`
`\Rightarrow 7^x = 588 \div 84`
`\Rightarrow 7^x = 7`
`\Rightarrow 7^x = 7^1`
`\Rightarrow x = 1`
Vậy, `x = 1.`
\(#48Cd\)
Bài 1: Tìm x
a) (2x-1)^2 +1=26
b)(2x-4)^3+2=66
c)7^x+2 +5.7^x+1+15=603
\(a)\left(2x-1\right)^2+1=26\)
\(\left(2x-1\right)^2=25\)
\(TH1:2x-1=5\)
\(2x=6\)
\(x=3\)
\(TH2:2x-1=-5\)
\(2x=-4\)
\(x=-2\)
Vậy........
\(b)\left(2x-4\right)^3+2=66\)
\(\left(2x-4\right)^3=64=4^3\)
\(2x-4=4\)
\(2x=8\)
\(x=4\)
\(c)7^x+2+5.7^x+1+15=603\)
\(7^x\left(1+5\right)=603-15-1-2\)
\(7^x.6=585\)
Bạn xem lại phần này nhé . x tìm ra không được chẵn lắm á cậu.
a,(2x-1)2+1=26
=>(2x-1)2=26-1=25=52
=>2x-1=5 và -5
=>x=(5+1):2=3 và x=(-5+1):2=-2
b,(2x-4)3+2=66
=>(2x-4)3=66-2=64=43
=>2x-4=4
=>x=(4+4):2=4
c,7x+2+5\(\cdot\)7x+1+15=603
=>7x\(\cdot\)72+5\(\cdot\)7x\(\cdot\)7=603-15=588
=>7x(72+5\(\cdot\)7)=588
=>7x\(\cdot\)84=588
=>7x=588:84=7
=>x=1
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
tìm số nguyên x biết
a) -x/2+ 2x/3 + x+1/4 + 2x+1/6 = 3/8
b) 3/2x+1 + 10/4x+2 - 6/6x+3 = 12/26
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
Bài 1 : Tìm x
a) 2x ( x-5 ) - x ( 3+2x ) = 26
b) ( x-7 ) ( x+ 7) = 0
Bài 2 : Tính
a) ( x-y ) ( x^2 + xy + y^2 )
b) ( 2x-1 ) ( 2x + 1 ) ( 1 - 5x )
Bài 3 : Chứng minh
a) ( x-1 ) ( x^2 + x+1 ) = x^3-1
b) x^4 - y^4 = ( x^3 + x^2y + xy^2 + y^3 ) ( x - y )
c) x ( 2x - 3 ) - 2x. ( x+1 ) chia hết cho 5 với mọi x thuộc z
Bài 1:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x-26=0\)
\(\Leftrightarrow-13\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Bài 2:
a) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
b) \(\left(2x-1\right)\left(2x+1\right)\left(1-5x\right)\)
\(=\left(4x^2-1\right)\left(1-5x\right)\)
\(=4x^2-20x^3-1+5x\)
Bài 3:
a: \(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1=x^3-1\)
b: \(x^4-y^4\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
c: \(x\left(2x-3\right)-2x\left(x+1\right)\)
\(=2x^2-3x-2x^2-2x=-5x⋮5\)