LY

Những câu hỏi liên quan
H24
Xem chi tiết
H24
29 tháng 10 2023 lúc 21:09

d) \(x^2=a\left(a\ge0\right)\)

\(\Rightarrow x=\sqrt{a}\)

e) \(x^2=\dfrac{4}{9}\)

\(\Rightarrow x^2=\left(\pm\dfrac{2}{3}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

f) \(x^2-\dfrac{16}{25}=0\)

\(\Rightarrow x^2=\dfrac{16}{25}\)

\(\Rightarrow x^2=\left(\pm\dfrac{4}{5}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

g) \(x^2-\dfrac{7}{36}=0\)

\(\Rightarrow x^2=\dfrac{7}{36}\)

\(\Rightarrow x^2=\left(\pm\sqrt{\dfrac{7}{36}}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{7}{36}}\\x=-\sqrt{\dfrac{7}{36}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{7}}{6}\\x=-\dfrac{\sqrt{7}}{6}\end{matrix}\right.\)

h) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1>0\forall x\)

mà \(x^2+1=0\)

nên không tìm được giá trị nào của x thoả mãn đề bài.

Bình luận (0)
TT
Xem chi tiết
AH
17 tháng 7 2021 lúc 19:24

Lời giải:

b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:

 $B=90^0-C=90^0-45^0=45^0$

Do đó, tam giác $ABC$ vuông cân tại $A$

$\Rightarrow AC=AB=50$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)

f.

Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$

$\Rightarrow B=44,42^0$

$C=90^0-B=90^0-44,42^0=45,58^0$

Bình luận (0)
NT
17 tháng 7 2021 lúc 20:04

b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)

Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=50^2+50^2=5000\)

hay \(BC=50\sqrt{2}\left(cm\right)\)

Bình luận (0)
NT
17 tháng 7 2021 lúc 22:34

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(=100\cdot\dfrac{\sqrt{3}}{3}\)

\(=\dfrac{100\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100^2+\left(\dfrac{100\sqrt{3}}{3}\right)^2=\dfrac{40000}{3}\)

hay \(AC=\dfrac{200\sqrt{3}}{3}\left(cm\right)\)

Bình luận (0)
NL
Xem chi tiết
NT
11 tháng 1 2022 lúc 10:04

a: f(-1)=-03

f(0)=-2

b: f(x)=3

=>x-2=3

hay x=5

Bình luận (1)
HT
Xem chi tiết
4T
Xem chi tiết
H24
6 tháng 11 2021 lúc 19:55

15d

16b

17a

18c

19d

20a

21b

22a

Bình luận (0)
TM
Xem chi tiết
MB
Xem chi tiết
NT
8 tháng 8 2021 lúc 20:01

Câu 9:

a) Ta có: \(9x^2-16=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(4x^2=13\)

\(\Leftrightarrow x^2=\dfrac{13}{4}\)
\(\Leftrightarrow x\in\left\{\dfrac{\sqrt{13}}{2};-\dfrac{\sqrt{13}}{2}\right\}\)

c) Ta có: \(2x^2+9=0\)

\(\Leftrightarrow2x^2=-9\)(Vô lý)

d) Ta có: \(-x^2+324=0\)

\(\Leftrightarrow x^2=324\)

\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
HT
Xem chi tiết
IT
9 tháng 7 2021 lúc 15:11

b)\(\Delta DBC\) vuông tại B có đường cAO BA nên

\(\dfrac{1}{AB^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}\)

\(\Leftrightarrow\dfrac{1}{BD^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)

\(\Leftrightarrow BD=\dfrac{15}{4}\left(cm\right)\)

\(AD=\sqrt{BD^2-AB^2}=\dfrac{9}{4}\left(cm\right)\)

 

c)\(\Delta ABD\) vuông tại A có đường cao AF nên

\(BF.BD=AB^2\left(1\right)\)

\(\Delta BAC\) vuông tại có đường cao AE nên

\(BE.BC=AB^2\left(2\right)\)

từ \(\left(1\right)và\left(2\right)\Rightarrow BF.BD=BE.BC\)

Bình luận (0)