Những câu hỏi liên quan
NT
Xem chi tiết
DQ
Xem chi tiết
HP
Xem chi tiết
YN
10 tháng 2 2023 lúc 22:59

Ta có:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{10}\)

...

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>100.\dfrac{1}{10}=10\).

Bình luận (0)
TN
Xem chi tiết
NL
17 tháng 10 2018 lúc 22:40

Rút gọn biểu thức chứa căn bậc hai

Bình luận (0)
TS
Xem chi tiết
GH
17 tháng 6 2023 lúc 22:35

VT tương đương với \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)

\(=\sqrt{100}-\sqrt{99}+\sqrt{99}-....-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\) (kiểu do mẫu số nó có kết quả âm nên đảo lại phép)

\(=10-1=9=VP\)

Bình luận (1)
LA
Xem chi tiết
LF
10 tháng 3 2017 lúc 18:43

Ta có:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(...............\)

\(\dfrac{1}{\sqrt{98}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

Cộng theo vế ta có:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{99}{10}\)

Lại có \(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\) suy ra:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{100}{10}=10\)

Bình luận (0)
GT
1 tháng 10 2017 lúc 21:48

Ta có:

1/√1>1/√100=1/10

1/√2>1/√100=1/10

........

1/√100=1/√100=1/10

Nên:

1/√1+1/√2+...+1/√100>1/10+1/10+...+1/10(100 phân số 1/10)

=1/√1+1/√2+..+1/√100>100/10

1/√1+1/√2+..+1/√100>10(đpcm)

Bình luận (0)
CL
29 tháng 5 2018 lúc 22:00

Ta có:

1√1>1√100=11011>1100=110

1√2>1√100=11012>1100=110

..............................

1√98>1√100=110198>1100=110

1√99>1√100=110199>1100=110

Cộng theo vế ta có:

1√1+1√2+...+1√99>110+110+...+110=991011+12+...+199>110+110+...+110=9910

Lại có 1√100=1101100=110 suy ra:

Bình luận (0)
HU
Xem chi tiết
ND
21 tháng 6 2018 lúc 7:56

Tham khảo: Câu hỏi của Lương Tuấn Anh - Toán lớp 7 | Học trực tuyến

Bình luận (0)
H24
21 tháng 6 2018 lúc 8:45
https://i.imgur.com/4s8fc3X.jpg
Bình luận (0)
H24
Xem chi tiết
NH
2 tháng 1 2018 lúc 20:36

Ta có :

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{`100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

........................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.......+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+........+\dfrac{1}{10}=\dfrac{100}{10}=10\)

\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)

Bình luận (0)
NN
2 tháng 1 2018 lúc 20:43

Giải:

Ta thấy:

\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

...................................

\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}.\)

\(>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}.\)
\(=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (100 số hạng \(\dfrac{1}{10}\)).

\(=\dfrac{100}{10}=10.\)

\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right).\)

Vậy..........

Bình luận (0)
NC
14 tháng 1 2018 lúc 22:38

Ta có :

1√1>1√‘100=11011>1‘100=110

1√2>1√100=11012>1100=110

1√3>1√100=11013>1100=110

........................................

1√99>1√100=110199>1100=110

1√100=1√100=1101100=1100=110

⇔1√1+1√2+.......+1√100>110+110+........+110=10010=10⇔11+12+.......+1100>110+110+........+110=10010=10

⇔1√1+1√2+......+1√100>10(đpcm)haha

Bình luận (0)
LL
Xem chi tiết
LF
2 tháng 4 2017 lúc 7:56

nhớ tìm kiếm trước khi hỏi

Bình luận (0)
HQ
2 tháng 4 2017 lúc 9:17

Ta có:

\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)

\(.............................\)

\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

Cộng từng vế của các BĐT trên ta được:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)

Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)

Bình luận (0)