Ôn tập toán 7

LL

Chứng minh rằng: \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{100}}>10\)

LF
2 tháng 4 2017 lúc 7:56

nhớ tìm kiếm trước khi hỏi

Bình luận (0)
HQ
2 tháng 4 2017 lúc 9:17

Ta có:

\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)

\(.............................\)

\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)

\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)

Cộng từng vế của các BĐT trên ta được:

\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)

\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)

Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
AH
Xem chi tiết
LK
Xem chi tiết
TT
Xem chi tiết
DC
Xem chi tiết
HL
Xem chi tiết
TD
Xem chi tiết
CT
Xem chi tiết
TM
Xem chi tiết