Bài 1: Căn bậc hai

TS

Chứng minh đẳng thức sau:
\(\dfrac{1}{1+\sqrt{2}}\)+\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+...+\(\dfrac{1}{\sqrt{99}+\sqrt{100}}\)=9

GH
17 tháng 6 2023 lúc 22:35

VT tương đương với \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{1}-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\)

\(=\sqrt{100}-\sqrt{99}+\sqrt{99}-....-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\) (kiểu do mẫu số nó có kết quả âm nên đảo lại phép)

\(=10-1=9=VP\)

Bình luận (1)

Các câu hỏi tương tự
CA
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
AD
Xem chi tiết
SA
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
QN
Xem chi tiết