Tìm Min, Max:
a, \(y=\sqrt{1-Cos\left(3x^2\right)}-2\)
b, \(y=2008Cos\sqrt{x-1}\)
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Tìm Min, Max:
a, \(y=\left|Sinx\right|-\sqrt{Cosx}\)
b, \(y=12Sin^4x+Sin^2x+Cos4x+2Cos^2x\)
tìm y'
a) \(y=sin^3x\)
b) \(y=cos^3x\)
c) \(y=sinx.cos^2x\)
d) \(y=\sqrt[3]{x}+\sqrt[3]{\left(x+1\right)^2}\)
a. \(y'=3sin^2x.\left(sinx\right)'=3sin^2x.cosx\)
b. \(y'=3cos^2x.\left(cosx\right)'=-3cos^2x.sinx\)
c. \(y'=cosx.cos^2x+2cosx.\left(-sinx\right).sinx=cos^3x-2cosx.sin^2x\)
d. \(y=x^{\dfrac{1}{3}}+\left(x+1\right)^{\dfrac{2}{3}}\Rightarrow y'=\dfrac{1}{3}x^{-\dfrac{2}{3}}+\dfrac{2}{3}\left(x+1\right)^{-\dfrac{1}{3}}=\dfrac{1}{3\sqrt[3]{x^2}}+\dfrac{2}{3\sqrt[3]{x+1}}\)
Hãy chứng min rằng :
1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)
Tìm giá trị max, min của các hàm số sau:
1, y= 2 - \(\sin\left(\dfrac{3\pi}{2}+x\right)\cos\left(\dfrac{\pi}{2}+x\right)\)
2, y= \(\sqrt{5-2\sin^2x.\cos^2x}\)
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)
Tìm tập xác định của y=f(x)=\(\dfrac{\sin\left(3x\right)}{\tan^2\left(x\right)-1}+\sqrt{\dfrac{2-\cos\left(x\right)}{1+\cos\left(x\right)}}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}tanx\ne\pm1;cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
Tìm TXĐ:
a, \(y=\dfrac{1}{2}\sin\left(2x-1\right)-\cos\left(x^2-2\right)\).
b, \(y=\sin\sqrt{2x-4}\).
c, \(y=\sqrt{1-\cos^2x}\).
a: ĐKXĐ: \(x\in R\)
=>TXĐ: D=R
b; ĐKXĐ: 2x-4>=0
=>x>=2
TXĐ: D=[2;+\(\infty\))
c: ĐKXĐ: 1-cos^2x>=0
=>sin^2x>=0(luôn đúng)
\(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
y=2sin3xcos5x
\(y=\left(1+\sqrt{1-2x}\right)^3\)
\(y=x^2\sin\left(3x-1\right)\)
\(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
Yêu cầu đề bài là gì vậy bạn?
tìm max, min
a) y=\(\dfrac{\sqrt{x-1}}{x}\) trên \([1;5]\)
b) y=\(\dfrac{x+3}{\sqrt{x^2+1}}\) trên \([1;3]\)
c) y=\(\sin^2x-\cos x+1\)
d) y=\(\sin^3x-3\sin^2x+2\)
a0
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)